Thermal Properties of Biopolymers

  • Reference work entry
  • First Online:
Handbook of Biopolymers
  • 1203 Accesses

Abstract

In the context of sustainable development, the use of polymers of natural origin has gained a lot of significance. Degradability, nontoxicity, a wealth of natural resources available as raw materials, and renewable nature are the main characteristics that are prioritized when employing biopolymers. These polymers have a wide range of applications, including medication administration, tissue engineering, tumor ablation, biomedicine, and food packaging. Their weak thermal and mechanical stability, however, is a drawback. The four most studied biopolymers, cellulose, starch, chitosan, and polylactic acid, have all been the subject of thermal investigations, which have been attempted to be analyzed in this chapter. The thermogravimetric analysis and differential scanning calorimetric methods gave an idea on the thermal stability, degradation steps, and glass transition temperature and crystallinity of the samples. Various studies on effect of different parameter affecting the thermal degradation are also highlighted. Studies have proved that the use of other polymers, crosslinking agents, and nanofillers blended along with biopolymer has improved the thermal stability. These studies would provide an insight into further development of methodologies to improve upon the properties of natural polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • J.R.M. Almeida, R.C.M.P. Aquino, S.N. Monteiro, Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea Funifera) fibers. Compos. A: Appl. Sci. Manuf. 37, 1473 (2006)

    Google Scholar 

  • F. Al-Sagheer, S. Muslim, Thermal and mechanical properties of chitosan/SiO2 hybrid composites. J. Nanomater. 2010, 1 (2010)

    Google Scholar 

  • Y. Aoyagi, K. Yamashita, Y. Doi, Thermal degradation of poly[(R)-3- hydroxybutyrate], poly[e-caprolactone], and poly[(S)-lactide]. Polym. Degrad. Stab. 76, 53–59 (2002)

    CAS  Google Scholar 

  • I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jimenez, K. Yoon, J. Ahn, S. Kang, J.M. Kenny, Bio-based PLA_PHB plasticized blend films: processing and structural characterization. Lebenson. Wiss. Technol. 64, 980 (2015)

    CAS  Google Scholar 

  • A. Athijayamani, R. Ganesamoorthy, J. Gobinath, Effect of reinforcement of chopped agave Sisalana Variegata/banana hybrid fibers on the mechanical properties of vinyl ester resin. Int. J. Mech. Eng. Res. 5, 20 (2015)

    Google Scholar 

  • D. Aydemir, D.J. Gardner, Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydr. Polym. 250, 116867 (2020)

    CAS  Google Scholar 

  • N.A. Aziz, S.R. Majid, R. Yahya, A.K. Arof, Conductivity, structure, and thermal properties of chitosan-based polymer electrolytes with nanofillers: chitosan-based polymer electrolytes. Polym. Adv. Technol. 22, 1345 (2011)

    CAS  Google Scholar 

  • D. Bajer, K. Janczak, K. Bajer, Novel starch/chitosan/aloe vera composites as promising biopackaging materials. J. Polym. Environ. 28, 1021 (2020)

    CAS  Google Scholar 

  • D.S. Bajwa, J. Shojaeiarani, J.D. Liaw, S.G. Bajwa, Role of hybrid nano-zinc oxide and cellulose nanocrystals on the mechanical, thermal, and flammability properties of poly (lactic acid) polymer. J. Compos. Sci. 5, 43 (2021)

    CAS  Google Scholar 

  • M.S. Barkhad, B. Abu-Jdayil, A.H.I. Mourad, M.Z. Iqbal, Thermal insulation and mechanical properties of Polylactic Acid (PLA) at different processing conditions. Polymers (Basel) 12, 2091 (2020)

    CAS  Google Scholar 

  • L. Bastarrachea, S. Dhawan, S.S. Sablani, Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng. Rev. 3, 79 (2011)

    Google Scholar 

  • S. Ben Cheikh, R. Ben Cheikh, E. Cunha, P.E. Lopes, M.C. Paiva, Production of cellulose nanofibers from alfa grass and application as reinforcement for polyvinyl alcohol. Plast. Rubber Compos. 47, 297 (2018)

    CAS  Google Scholar 

  • T. Chandy, C.P. Sharma, Chitosan – as a biomaterial. Biomater. Artif. Cells Artif. Organs 18(1), 1–24 (1990)

    CAS  Google Scholar 

  • N.P. Cheremisinoff, P.N. Cheremisinoff, Handbook of Applied Polymer Processing Technology, Plastics Engineering, vol 38 (CRC Press, New York, 1996), p. 31

    Google Scholar 

  • F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 49, 780 (2013)

    CAS  Google Scholar 

  • Z. Cui, Z. Zheng, L. Lin, J. Si, Q. Wang, X. Peng, W. Chen, Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol. 37, 1917 (2018)

    CAS  Google Scholar 

  • R.T. De Silva, M.M.M.G.P.G. Mantilaka, S.P. Ratnayake, G.A.J. Amaratunga, K.M.N. de Silva, Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr. Polym. 157, 739 (2017)

    Google Scholar 

  • M.A. Diab, A.Z. El-Sonbati, M.M. Al-Halawany, D.M.D. Bader, Thermal stability and degradation of chitosan modified by cinnamic acid. Open J. Polym. Chem. 02, 14 (2012)

    CAS  Google Scholar 

  • J.W. Donovan, Phase transitions of the starch-water system. Biopolymers 18, 263 (1979)

    CAS  Google Scholar 

  • S. Ebnesajjad (ed.), Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications (William Andrew Publications, New York, 2013)

    Google Scholar 

  • A.N. Frone, D. Batalu, I. Chiulan, M. Oprea, A.R. Gabor, C.-A. Nicolae, V. Raditoiu, R. Trusca, D.M. Panaitescu, Morpho-structural, thermal and mechanical properties of PLA/PHB/cellulose biodegradable nanocomposites obtained by compression molding, extrusion, and 3D printing. Nanomater (Basel) 10, 51 (2019)

    Google Scholar 

  • D. Garcia-Garcia, J.M. Ferri, N. Montanes, J. Lopez-Martinez, R. Balart, Plasticization effects of epoxidized vegetable oils on mechanical properties of poly (3-Hydroxybutyrate): plasticization effects of epoxidized vegetable oils on properties of PHB. Polym. Int. 65, 1157 (2016)

    CAS  Google Scholar 

  • V. Georgieva, D. Zvezdova, L. Vlaev, Non-isothermal kinetics of thermal degradation of chitosan. Chem. Cent. J. 6, 81 (2012)

    CAS  Google Scholar 

  • T.J. Gutiérrez, K. Álvarez, Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added aloe vera gel. J. Funct. Foods 26, 750 (2016)

    Google Scholar 

  • P.-Z. Hong, S.-D. Li, C.-Y. Ou, C.-P. Li, L. Yang, C.-H. Zhang, Thermogravimetric analysis of chitosan. J. Appl. Polym. Sci. 105, 547 (2007)

    CAS  Google Scholar 

  • N. Jha, L. Iyengar, A.V.S.P. Rao, Removal of cadmium using chitosan. J. Environ. Eng. (New York) 114, 962 (1988)

    CAS  Google Scholar 

  • D. Jun, Z. Guomin, P. Mingzhu, Z. Leilei, L. Dagang, Z. Rui, Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: effect of CNCs and CNFs. Carbohydr. Polym. 168, 255 (2017)

    Google Scholar 

  • M. Kervran, C. Vagner, M. Cochez, M. Ponçot, M.R. Saeb, H. Vahabi, Thermal degradation of polylactic acid (PLA)/Polyhydroxybutyrate (PHB) blends: a systematic review. Polym. Degrad. Stab. 201, 109995 (2022)

    CAS  Google Scholar 

  • F.J. Kilzer, A. Broido, Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2, 151 (1965)

    CAS  Google Scholar 

  • M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017 (2004)

    Google Scholar 

  • W. Li, Q. Wu, X. Zhao, Z. Huang, J. Cao, J. Li, S. Liu, Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr. Polym. 113, 403 (2014)

    CAS  Google Scholar 

  • X. Liu, Y. Wang, L. Yu, Z. Tong, L. Chen, H. Liu, X. Li, Thermal degradation and stability of starch under different processing conditions. Star 65, 48 (2013)

    CAS  Google Scholar 

  • E. Lizundia, J.L. Vilas, L.M. León, Crystallization, structural relaxation and thermal degradation in poly (l-Lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr. Polym. 123, 256 (2015)

    CAS  Google Scholar 

  • A. Lopera-Valle, J.V. Caputo, R. Leão, D. Sauvageau, S.M. Luz, A. Elias, Influence of Epoxidized Canola Oil (ECO) and Cellulose Nanocrystals (CNCs) on the mechanical and thermal properties of Polyhydroxybutyrate (PHB)-poly(lactic acid) (PLA) blends. Polymers (Basel) 11(933) (2019)

    Google Scholar 

  • S. Maiti, J. Jayaramudu, K. Das, S.M. Reddy, R. Sadiku, S.S. Ray, D. Liu, Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr. Polym. 98, 562 (2013)

    CAS  Google Scholar 

  • S. Mao, X. Shuai, F. Unger, M. Simon, D. Bi, T. Kissel, The depolymerization of chitosan: effects on physicochemical and biological properties. Int. J. Pharm. 281, 45 (2004)

    CAS  Google Scholar 

  • H. Molavi, S. Behfar, M. Ali Shariati, M. Kaviani, S. Atarod, A review on biodegradable starch based film. J. Microbiol. Biotechnol. Food Sci. 4, 456 (2015)

    CAS  Google Scholar 

  • N.C. Nepomuceno, A.S. Santos, J.E. Oliveira, G.M. Glenn, E.S. Medeiros, Extraction and characterization of cellulose nanowhiskers from Mandacaru (cereus Jamacaru DC), spines. Cellulose 24, 119 (2017)

    CAS  Google Scholar 

  • J.M. Nieto, C. Peniche-Covas, G. Padro’n, Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry. Thermochim. Acta 176, 63 (1991)

    CAS  Google Scholar 

  • E. Onsosyen, O. Skaugrud, Metal recovery using chitosan. J. Chem. Technol. Biotechnol. 49, 395 (1990)

    Google Scholar 

  • D.M. Panaitescu, C.A. Nicolae, A.N. Frone, I. Chiulan, P.O. Stanescu, C. Draghici, M. Iorga, M. Mihailescu, Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J. Appl. Polym. Sci. 134 (2017)

    Google Scholar 

  • E.M.N. Polman, G.-J.M. Gruter, J.R. Parsons, A. Tietema, Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: a review. Sci. Total Environ. 753, 141953 (2021)

    CAS  Google Scholar 

  • M. Pyda, Conformational contribution to the heat capacity of the starch and water system. J. Polym. Sci. B Polym. Phys. 39, 3038 (2001)

    CAS  Google Scholar 

  • M. Pyda, Conformational heat capacity of interacting systems of polymer and water. Macromolecules 35, 4009 (2002)

    CAS  Google Scholar 

  • M.N.V. Ravi Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46, 1 (2000)

    Google Scholar 

  • M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603 (2006)

    CAS  Google Scholar 

  • E. Rudnik, G. Matuschek, N. Milanov, A. Kettrup, Thermal properties of starch succinates. Thermochim. Acta 427, 163 (2005)

    CAS  Google Scholar 

  • M.H. Shahavi, P.P. Selakjani, M.N. Abatari, P. Antov, V. Savov, Novel biodegradable poly (lactic acid)/wood leachate composites: investigation of antibacterial, mechanical, morphological, and thermal properties. Polymers (Basel) 14, 1227 (2022)

    CAS  Google Scholar 

  • J.-H. Shin, J.E. Yang, J.E. Park, S.-W. Jeong, S.-J. Choi, Y.J. Choi, J. Jeon, Rapid and efficient removal of anionic dye in water using a chitosan-coated iron oxide-immobilized polyvinylidene fluoride membrane. ACS Omega 7, 8759 (2022)

    CAS  Google Scholar 

  • R. Shogren, Preparation, thermal properties, and extrusion of high-amylose starch acetates. Carbohydr. Polym. 29, 57 (1996)

    CAS  Google Scholar 

  • T. Singh, L. Lendvai, G. Dogossy, G. Fekete, Physical, mechanical, and thermal properties of Dalbergia Sissoo wood waste-filled poly(lactic acid) composites. Polym. Compos. 42, 4380 (2021)

    CAS  Google Scholar 

  • Y. Srithep, T. Ellingham, J. Peng, R. Sabo, C. Clemons, L.-S. Turng, S. Pilla, Melt compounding of poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym. Degrad. Stab. 98, 1439 (2013)

    CAS  Google Scholar 

  • M.I. Sujan, S.D. Sarkar, C.K. Roy, M. Ferdous, A. Goswami, M.A. Gafur, M.S. Azam, Graphene oxide crosslinker for the enhancement of mechanical properties of polylactic acid. J. Polym. Sci. 59, 1043 (2021)

    CAS  Google Scholar 

  • T. Sultana, S. Sultana, H.P. Nur, M.W. Khan, Studies on mechanical, thermal and morphological properties of betel nut husk nano cellulose reinforced biodegradable polymer composites. J. Compos. Sci. 4, 83 (2020)

    CAS  Google Scholar 

  • E. Szymańska, K. Winnicka, Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar. Drugs 13, 1819 (2015)

    Google Scholar 

  • S. Thiebaud, J. Aburto, I. Alric, E. Borredon, D. Bikiaris, J. Prinos, C. Panayiotou, Properties of fatty-acid esters of starch and their blends with LDPE. J. Appl. Polym. Sci. 65, 705 (1997)

    CAS  Google Scholar 

  • S. Thomas, P.A. Soloman, V.O. Re**i, Preparation of chitosan- CMC blends and studies on thermal properties. Procedia Technol. 24, 721 (2016)

    Google Scholar 

  • K. Van de Velde, P. Kiekens, Biopolymers: overview of several properties and consequences on their applications. Polym. Test. 21, 433 (2002)

    Google Scholar 

  • N. Varol, Advanced Thermal Analysis and Transport Properties of Stereocomplex Polylactide (2019)

    Google Scholar 

  • M.G.A. Vieira, M.A. da Silva, L.O. dos Santos, M.M. Beppu, Natural-based plasticizers and biopolymer films: a review. Eur. Polym. J. 47, 254 (2011)

    CAS  Google Scholar 

  • Q. Wang, C. Ji, J. Sun, Q. Zhu, J. Liu, Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils. Molecules 25, 3306 (2020)

    CAS  Google Scholar 

  • P.I.J.M. Wuisman, T.H. Smit, Bioresorbable polymers: heading for a new generation of spinal cages. Eur. Spine J. 15, 133 (2006)

    CAS  Google Scholar 

  • P.R. Yaashikaa, P. Senthil Kumar, S. Karishma, Review on biopolymers and composites – evolving material as adsorbents in removal of environmental pollutants. Environ. Res. 212, 113114 (2022)

    CAS  Google Scholar 

  • S. Yano, H. Hatakeyama, T. Hatakeyama, Effect of hydrogen bond formation on dynamic mechanical properties of amorphous cellulose. J. Appl. Polym. Sci. 20, 3221 (1976)

    CAS  Google Scholar 

  • J.S. Yaradoddi, N.R. Banapurmath, S.V. Ganachari, M.E.M. Soudagar, N.M. Mubarak, S. Hallad, S. Hugar, H. Fayaz, Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Sci. Rep. 10, 21960 (2020)

    CAS  Google Scholar 

  • V.A. Yiga, M. Lubwama, S. Pagel, J. Benz, P.W. Olupot, C. Bonten, Flame retardancy and thermal stability of agricultural residue fiber-reinforced polylactic acid: a review. Polym. Compos. 42, 15 (2021)

    CAS  Google Scholar 

  • S.-D. Yoon, Cross-linked potato starch-based blend films using ascorbic acid as a plasticizer. J. Agric. Food Chem. 62, 1755 (2014)

    Google Scholar 

  • C.E.H. Yves, J.F.B. Rodrigues, K.O. Santos, C. Peniche, M.V. LiaFook, Characterization and thermal properties of chitosan films prepared with different acid solvents. Rev. Cub. Quim. [Online] 31, 309 (2019)

    Google Scholar 

  • Y. Zhang, Y. Wu, M. Yang, G. Zhang, H. Ju, Thermal stability and dynamic mechanical properties of poly(ε-Caprolactone)/chitosan composite membranes. Materials (Basel) 14, 5538 (2021)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrutha S. R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

S. R., A., P. K., R., N. R., S., Mart, A. (2023). Thermal Properties of Biopolymers. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_12

Download citation

Publish with us

Policies and ethics

Navigation