Fundamental of Aerobic and Anaerobic Processes in Dye Wastewater

  • Chapter
  • First Online:
Biological Approaches in Dye-Containing Wastewater

Abstract

One of the critical challenges of the textile industry is the removal and degradation of dyes. While designing a wastewater treatment plant, the design, environment, and toxicity concerns associated with releasing textile effluents into a water body must be considered. The various traditional methods like coagulation, adsorption, oxidation, and flocculation are used to remove the contamination. Compared to all oxidation and physicochemical methods, the biological process, either aerobic or anaerobic is easy and demonstrates substantial benefits. This chapter covers the different aerobic and anaerobic processes employed to remove contaminants from textile industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi T, Abbasi SA (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in Upflow Anaerobic Sludge Blanket (UASB) reactors. Renew Sustain Energy Rev 16:1696–1708. https://doi.org/10.1016/j.rser.2011.11.017

    Article  CAS  Google Scholar 

  2. Ali H (2010) Biodegradation of synthetic dyes-a review. Water Soil Pollut 213:251–273. https://doi.org/10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  3. Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2011) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230. https://doi.org/10.1007/s13213-010-0144-y

    Article  CAS  Google Scholar 

  4. Anjaneyulu Y, Chary NS, Raj SSD (2005) Decolourization of industrial effluents–available methods and emerging technologies-a review. Envirn Sci Biotechnol 4:245–273. https://doi.org/10.1007/s11157-005-1246-z

    Article  CAS  Google Scholar 

  5. Arslan S, Eyvaz M, Gurbulak E, Yuksel E (2015) A review of state of the art technologies in dye-containingwastewater treatment–the textile industry case. In: Kumbasar EPA, Körlü AE, IntechOpen. Textile Wastewater Treatment. https://doi.org/10.5772/64140

  6. Banat ME, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dye containing effluents, a review. Biores Technol 58:217–227. https://doi.org/10.1016/S0960-8524(96)00113-7

    Article  CAS  Google Scholar 

  7. Bhargava A (2016) Activated sludge treatment process–concept and system design. Int J Eng Dev Res 4:890–896

    Google Scholar 

  8. Boopathy R, Tilche A (1991) Anaerobic digestion of high strength molasses wastewater using hybrid anaerobic baffled reactor. Water Res 25:785–790. https://doi.org/10.1016/0043-1354(91)90157-L

    Article  CAS  Google Scholar 

  9. Brown D (1987) Effects of colorants in the aquatic environment. Ecotoxicol Environ Saf 13:139–147. https://doi.org/10.1016/0147-6513(87)90001-7

    Article  CAS  Google Scholar 

  10. Buzzini AP, Sakamoto IK, Varesch MB, Pires EC (2006) Evaluation of the microbal diversity in an UASB reactor treating from an unbleached pulp plant. Process Biochem 41:168–176. https://doi.org/10.1016/j.procbio.2005.06.009

    Article  CAS  Google Scholar 

  11. Cattaneo C, Nicolella C, Rovatti M (2003) Denitrification performance of Pseudomonas denitricanc in a fluidized-bed biofilm reactor and in a stirred tank reactor. Eng Life Sci 3(4):187–192. https://doi.org/10.1002/elsc.200390026

    Article  CAS  Google Scholar 

  12. Chandran D (2016) A review of the textile industries waste water treatment methodologies. Int J Sci Eng Res 7:392–403

    Google Scholar 

  13. Chen BY, Chang JS (2007) Assessment upon species evolution of mixed consortia for azo dye decolorization. J Chin Inst Chem Eng 38:259–266. https://doi.org/10.1016/j.jcice.2007.04.002

    Article  CAS  Google Scholar 

  14. Doble M, Kumar A (2005) Biotreatment of industrial effluents. Butterworth-Heinemann, pp111–132

    Google Scholar 

  15. Erkurt HA (2010) Biodegradation of azo dyes. Springer, Heidelberg Dordrecht, New York. https://doi.org/10.1007/978-3-642-11847-0

    Article  Google Scholar 

  16. Gao BY, Wang Y, Yue QY, Wei JC, Li Q (2007) Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by polyferric chloride and polydimethyldiallylammonium chloride. Sep Purif Technol 54:157–163. https://doi.org/10.1016/j.seppur.2006.08.026

    Article  CAS  Google Scholar 

  17. Ghaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 5:1000182. https://doi.org/10.4172/2157-7048.1000182

    Article  CAS  Google Scholar 

  18. Ghorbani M, Eisazadeh H (2013) Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Compos B Eng 45:1–7. https://doi.org/10.1016/j.compositesb.2012.09.035

    Article  CAS  Google Scholar 

  19. Han JL, Ng IS, Wang Y, Zheng X, Chen WM, Hsueh CC (2012) Exploring new strains of dye-decolorizing bacteria. J Biosci Bioeng 113:508–514. https://doi.org/10.1016/j.jbiosc.2011.11.014

    Article  CAS  Google Scholar 

  20. Haroun M, Idris A (2009) Treatment of textile wastewater with an anaerobic fluidized bed reactor. Desalination 237:357–366. https://doi.org/10.1016/j.desal.2008.01.027

    Article  CAS  Google Scholar 

  21. Hassan SR, Dahlan I (2013) Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review. Cent Eur J Eng 3:389–399. https://doi.org/10.2478/s13531-013-0107-8

    Article  CAS  Google Scholar 

  22. Irvine RL, Ketchum LH Jr, Asano T (2009) Sequencing batch reactors for biological wastewater treatment. Crit Rev Environ Control 18:225–294. https://doi.org/10.1080/10643388909388350

    Article  Google Scholar 

  23. Joshi M, Purwar R (2004) Developments in new processes for colour removal from effluent. Color Technol 34:58–71. https://doi.org/10.1111/j.1478-4408.2004.tb00152.x

    Article  CAS  Google Scholar 

  24. Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2007) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:405–1410. https://doi.org/10.1016/j.biortech.2006.05.023

    Article  CAS  Google Scholar 

  25. Kemker C (2014) Turbidity, total suspended solids and water clarity. Fondriest Environmental Inc., Fundamentals of Environmental Measurements, p 13

    Google Scholar 

  26. Kuhad RC, Sood N, Tripathi KK, Singh A, Ward OP (2004) Developments in microbial methods for the treatment of dye effluents. Adv Appl Microbiol 56:185–213. https://doi.org/10.1016/s0065-2164(04)56006-9

    Article  CAS  Google Scholar 

  27. Lim SJ, Kim TH (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 60:189–202. https://doi.org/10.1016/j.biombioe.2013.11.011

    Article  CAS  Google Scholar 

  28. Liu X, Yuan W, Di M, Li Z, Wang J (2019) Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chem Eng J 362:176–182. https://doi.org/10.1016/j.cej.2019.01.033

  29. Mainardis M, Buttazzoni M, Goi D (2020) Up-Flow anaerobic sludge blanket (UASB) technology for energy recovery: a review on state-of-the-art and recent technological advances. Bioengineering 7:43. https://doi.org/10.3390/bioengineering7020043

    Article  CAS  Google Scholar 

  30. Manu B, Chaudhari S (2002) Anaerobic deodorization of simulated textile wastewater containg azo dyes. Biores Technol 82:225–231. https://doi.org/10.1016/s0960-8524(01)00190-0

    Article  CAS  Google Scholar 

  31. Mostafa M (2015) Waste water treatment in textile industries- the concept and current technologies. J Biodivers Environ Sci 7:501–525

    Google Scholar 

  32. Mulcahy LT, Shieh WK, LaMotta EJ (1980) Kinetic model of biological denitrification in a fluidized bed biofilm reactor (FBBR). Prog Water Technol 12:143–157. https://doi.org/10.1016/B978-1-4832-8438-5.50015-7

    Article  CAS  Google Scholar 

  33. Naimabadi A, Movahedian AH, Shahsavani A (2009) Decolorization and biological degradation of azo dye reactive red2 by anaerobic/aerobic sequential process. Iran J Environ Health Sci Eng 6:67–72

    CAS  Google Scholar 

  34. Naresh B, Jaydip J, Prabhat B, Rajkumar P (2013) Recent biological technologies for textile effluent treatment. Int Res J Biological Sci 2:77–82

    Google Scholar 

  35. Nassar MM, Magdy YH (1997) Removal of different basic dyes from aqueous solutions by adsorption on palm-fruit bunch particles. Chem Eng J 66:223–226. https://doi.org/10.1016/S1385-8947(96)03193-2

    Article  CAS  Google Scholar 

  36. Nncy VS, Jenny YRV, Patrica TL, Carlos MP (2011) Performance of a contact stabilization process for domestic wastewater treatment of Cali, Colombia. Dyna 78:98–107

    Google Scholar 

  37. O’Neill C, Hawkes FR, Hawkes DW, Esteves S, Wilcox SJ (2000) Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Wat Res 34:2355–2361. https://doi.org/10.1016/S0043-1354(99)00395-4

    Article  Google Scholar 

  38. O’Neill FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Colour in textile effluents-sources, measurement, discharge consents and simulation: a review. Chem Technol Biotechnol 74:1009–1018. https://doi.org/10.1002/(SICI)1097-4660(199911)

    Article  CAS  Google Scholar 

  39. Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58:179–196. https://doi.org/10.1016/S0143-7208(03)00064-0

    Article  CAS  Google Scholar 

  40. Praveen Kumar GN, Bhat SK (2012) Decolorization of Azo dye Red 3BN by Bacteria. Inter Res J Biol Sci 1:46–52

    Google Scholar 

  41. Rabah FKJ, Dahab MF (2004) Nitrate removal characteristics of high performance fluidized-bed biofilm reactors. Water Res 38:3719–3728. https://doi.org/10.1016/j.watres.2004.07.002

    Article  CAS  Google Scholar 

  42. Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Environ Sci Technol 35:219–238. https://doi.org/10.1080/10643380590917932

    Article  CAS  Google Scholar 

  43. Ranade V, Bhandari V (2014) Industrial Wastewater Treatment, recycling and reuse, 1st edn. Butterworth-Heinemann, Oxford-UK, p 576

    Google Scholar 

  44. Sandhy S, Padmavathy S, Swaminathan K, Subrahmanyam YV, Kaul SN (2005) Microaerophilic–aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater. Process Biochem 40:885–890. https://doi.org/10.1016/j.procbio.2004.02.015

    Article  CAS  Google Scholar 

  45. Şen S, Demirer G (2003) Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res 37:1868–1878. https://doi.org/10.1016/s0043-1354(02)00577-8

    Article  Google Scholar 

  46. Senthil kumar M, Gnanapragasam G, Arutchelvan V, Nagarajan S, (2011) Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chem Eng J 166:10–14. https://doi.org/10.1016/j.cej.2010.07.057

    Article  CAS  Google Scholar 

  47. Shieh WK, Keenan JD (1986) Fluidized bed biofilm reactor for wastewater treatment. In: Biproducts. Adv Biochem Eng/Biotechnol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0002455

  48. Shivaranjani SK, Thomas LM (2007) Performance study for treatment of institutional wastewater by activated sludge process. Int J Civ Eng Technol 8:376–382

    Google Scholar 

  49. Simpson JR (1998) Activated sludge process. In: Encyclopedia of hydrology and lakes. Encyclopedia of Earth Science, Springer, Dordrecht. https://doi.org/10.1007/1-4020-4497-6_8

  50. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Ind J Pharmacol 43:246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  Google Scholar 

  51. Stanbury PF, Whitaker A, Hall SJ (2017) Principles of fermentation technology, 3rd edn. Butterworth-Heinemann, pp 687–723

    Google Scholar 

  52. Sutton PM, Mishra PN (1994) Activated carbon based biological fluidized beds for contaminated water and wastewater treatment: a state-of-the-art review. Water Sci Technol 29(10–11):309–317. https://doi.org/10.2166/wst.1994.0774

    Article  CAS  Google Scholar 

  53. Szpyrkowicz LC, Juzzolino C, Kaul SN (2001) A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Res 35:2129–2136. https://doi.org/10.1016/s0043-1354(00)00487-5

    Article  CAS  Google Scholar 

  54. Tauseef SM, Abbasi T, Abbasi SA (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev 19:704–741. https://doi.org/10.1016/j.rser.2012.11.056

    Article  CAS  Google Scholar 

  55. Van der Zee FP, Bisschops IAE, Blanchard VG, Bouwman RHM, Letting G, Field JA (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109. https://doi.org/10.1016/s0043-1354(03)00166-0

    Article  Google Scholar 

  56. Van der Zee FP, Lettinga G, Field JA (2000) The role of (auto)catalysis in the mechanism of anaerobic azo reduction. Water Sci Technol 42:301–308. https://doi.org/10.2166/wst.2000.0528

    Article  Google Scholar 

  57. Wang H, Su JQ, Zheng XW, Tian Y, **ong XJ, Zheng TL (2009) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int Biodeterior Biodegradation 63:395–399. https://doi.org/10.1016/j.ibiod.2008.11.006

    Article  CAS  Google Scholar 

  58. Wang J, Huang Y, Zhao X (2004) Performance and characteristics of an anaerobic baffled reactor. Bioresour Technol 93:205–208. https://doi.org/10.1016/j.biortech.2003.06.004

    Article  CAS  Google Scholar 

  59. Willetts JR, Ashbott NJ, Mossburgger RE, Asaim MR (2000) The use of a thermophilic anaerobic system for pretreatment of textile dye wastewater. Water Sci Technol 42:309–316. https://doi.org/10.2166/wst.2000.0529

    Article  CAS  Google Scholar 

  60. Yang X, Crespi M, López-Grimau V (2018) A review on the present situation of wastewater treatment in textile industry with membrane bioreactor and moving bed biofilm reactor. Desalin Water Treat 103:315–322. https://doi.org/10.5004/dwt.2018.21962

    Article  CAS  Google Scholar 

  61. Yang X, López-Grimau V, Vilaseca M, Crespi M (2020) Treatment of textile wastewater by CAS, MBR and MBBR: a comparative study from technical, economic, and environmental perspectives. Water 12:1306. https://doi.org/10.3390/w12051306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, P., Bhavani, A.G., Singh, P., Singh, M.B. (2022). Fundamental of Aerobic and Anaerobic Processes in Dye Wastewater. In: Khadir, A., Muthu, S.S. (eds) Biological Approaches in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0545-2_2

Download citation

Publish with us

Policies and ethics

Navigation