Dye Removal Using Activated Sludge

  • Chapter
  • First Online:
Biological Approaches in Dye-Containing Wastewater

Abstract

The textile industry demands substantial volume of water for several activities like dyeing, printing, and finishing. At the end of the processes these industries release huge amount of effluents containing dyes and their components which are not only aromatic but also carcinogenic in nature. Hence the effluents need to be treated for the elimination of dyes and other pollutants before discharge from the industry. High capital cost and less efficiency is the limiting factor for the various physicochemical processes used for the eradication of dye from wastewater. Activated sludge process is extensively used for the secondary treatment of wastewater as it helps in reducing both the chemical and biological oxygen demand with the help of aeration and dense microbial culture. But the generations of large volume of sludge containing residual biodegradation resistant compounds insist for modification of this process. In this review overview of activated sludge process for dye removal along with its limitation is carried out. This review also highlights recent advancement in the use of other methods like adsorption, aerobic granular technology, sequential chemical, and activated sludge process along with the use of bioflocculant from activated sludge system for dye removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahmoodi NM, Salehi R, Arami M, Bahrami H (2011) Dye removal from colored textile wastewater using chitosan in binary systems. Desalination 267:64–72

    CAS  Google Scholar 

  2. Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactivedyes. Process Biochem 31(5):435–442

    CAS  Google Scholar 

  3. Quan X, Zhang X, Xu H (2015) In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Res 78:74–83. https://europepmc.org/article/med/25912251

  4. Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Biores Technol 98(12):2369–2385

    Google Scholar 

  5. Huang J, Chu S, Chen J, Chen Y, **e Z (2014) Enhanced reduction of an azo dye using henna plant biomass as a solid phase electron donor, carbon source, and redox mediator. Biores Technol 161:465–468

    CAS  Google Scholar 

  6. De Luna MDG, Flores ED, Genuino DAD, Futalan CM, Wan M-W (2013) Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—optimization, isotherm and kinetic studies. J Taiwan Instit Chem Eng 44:646–653. https://doi.org/10.1016/j.jtice.2013.01.010

  7. Sadaf S, Bhatti HN, Nausheen S, Amin M (2015) Application of a novel lignocellulosic biomaterial for the removal of Direct Yellow 50 dye from aqueous solution: batch and column study. J Taiwan Inst Chem Eng 47:160–170

    CAS  Google Scholar 

  8. Santhi T, Smitha T, Sugirtha D, Mahalakshmi K (2009) Uptake of cationic dyes from aqueous solution by bioadsorption onto granular cucumissavita. J Appl Sci Environ Sanit 4:29–35

    Google Scholar 

  9. Haddad M, Abid S, Hamdi M, Bouallagui H (2018) Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. J Environ Manag 223:936–946. https://doi.org/10.1016/j.jenvman.2018.07.009

  10. Volesky B (1990) Biosorption and biosorbents. In: Biosorption of heavy metals. CRC Press, Florida, pp 3–6

    Google Scholar 

  11. Garg SK, Tripathi M (2017) Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Res J Microbiol 12:1–19

    Google Scholar 

  12. Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    CAS  Google Scholar 

  13. Mullai P, Yogeswari MK, Vishali S, Tejas Namboodiri MM, Gebrewold BD, Rene ER, Pakshirajan K (2017) Aerobic treatment of effluents from textile industry, current developments in biotechnology and bioengineering biological treatment of industrial effluents. In: Biological treatment of industrial effluents. Elsevier, pp 3–34

    Google Scholar 

  14. Djafer A, Kouadri Moustefai S, Iddou A, Si Ali B (2014) Study of bimacid dye removal from aqueous solution: a comparative study between adsorption on pozzolana, bentonite, and biosorption on immobilized anaerobic sulfatereducer cells. Desalin Water Treat 52:7723–7732

    CAS  Google Scholar 

  15. Henini G, Laidania L, Souahi F (2014) Study of the kinetics and thermodynamics of adsorption of Red Bemacid on the cords of Luffa cylindrical. Desalin Water Treat 57:3741–3749

    Google Scholar 

  16. Carvalho MC, Pereira C, Goncalves IC, Pinheiro HM, Santos AR, Lopes A, Ferra MI (2008) Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. Int Biodeter Biodeg 62:96–103

    CAS  Google Scholar 

  17. Franciscon E, Zille A, Fantinatti-Garboggini F, Silva IS, Cavaco-Paulo A, Durrant LR (2009) Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452

    Google Scholar 

  18. Tripathi A, Srivastava SK (2011) Ecofriendly treatment of azo dyes: biodecolorization using bacterial strains. Int J Biosci Biochem Bioinform 1:37–40

    Google Scholar 

  19. Henze M, Harremoes P, LaCour J, Arvin E (2000) Wastetwater treatment: biological and chemical processes, 3rd edn. Springer, Berlin Heidelberg, New York

    Google Scholar 

  20. Van H, Catunda PFC, Araujo L (1998) Biological sludge stabilization, Part 2-Influence of the composition of waste activated sludge on anaerobic digestion. Water SA 24:231–236

    Google Scholar 

  21. Vijayaraghavan K, Yun Y (2007) Utilization of fermentation waste (Coryne bacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. J Hazard Mater 141:45–52

    CAS  Google Scholar 

  22. Guo WQ, Yang SS, **ang WS, Wang XJ, Ren NQ (2013) Minimization of excess sludge production by in-situ activated sludge treatment processes—a comprehensive review. Biotechnol Adv 31:1386–1396

    CAS  Google Scholar 

  23. Manai I, Miladi B, El Mselmi AL, Smaali I, Ben Hassen A, Hamdi M, Bouallagui H (2016) Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923. J Environ Manag 170:8–14

    Google Scholar 

  24. Roy Choudhury AK (2017) Sustainable chemical technologies for textile production. Sustainable fibres and textiles. Woodhead Publishing, pp 267–322

    Google Scholar 

  25. Casas N, Blánquez P, Vincent T, Sarrà M (2013) Mathematical model for dye decoloration and laccase production by Trametes versicolor in fluidized bioreactor. Biochem Eng J 80:45–52

    CAS  Google Scholar 

  26. Sohaimi KSA, Ngadi N, Mat H, Inuwa IM, Wong S (2017) Synthesis, characterization and application of textile sludge biochars for oil removal. Environ Chem Eng 5:1415–1422

    CAS  Google Scholar 

  27. Wang Q, Luan Z, Wei N, Li J, Liu C (2009) The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution. J Hazard Mater 170:690–698

    CAS  Google Scholar 

  28. Meerbergen K, Crauwels S, Willems KA, Dewil R, Van Impe J, Appels L, Lievens B (2017) Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2017.07.005

  29. Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. Excli J 14:158–174

    Google Scholar 

  30. Meerbergen K, Crauwels S, Willems KA, Dewil R, Impe JV, Appels L, Lievens B (2017) Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment. J Biosci Bioeng 124:668–673

    CAS  Google Scholar 

  31. Manavi N, Kazemi AS, Bonakdarpour B (2016) The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater. Chem Eng J. https://doi.org/10.1016/j.cej.2016.11.155

  32. Nacera Y, Aicha B (2006) Equilibrium and kinetic modelling of methylene blue biosorption by pretreated dead streptomycesrimosus: effect of temperature. Chem Eng J 119:121–125. https://doi.org/10.1016/j.cej.2006.01.018

  33. Yu JX, Wang LY, Chi RA, Zhang YF, Xu ZG, Guo J (2013) A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption. Environ Sci Pollut Res 20:543–551. https://doi.org/10.1007/s11356-012-0903-3

    Article  CAS  Google Scholar 

  34. Aydogan MN, Arslan NP (2015) Removal of textile dye reactive black 5 by the cold-adapted, alkali- and halotolerant fungus Aspergillus flavipes MA-25 under non-sterile conditions. Desalin Water Treat 56:2258–2266. https://doi.org/10.1080/19443994.2014.960463

    Article  CAS  Google Scholar 

  35. Hernandez-Zamora M, Cristiani-Urbina E, Martinez-Jeronimo F, Perales-Vela H, Ponce-Noyola T, Montes-Horcasitas MD, Canizares-Villanueva RO (2015) Bioremoval of the azo dye Congo red by the microalga Chlorella vulgaris. Environ Sci Pollut Res 22:10811–10823. https://doi.org/10.1007/s11356-015-4277-1

  36. Paredes-Laverde M, Salamanca M, Diaz-Corrales JD, Flórez E, Silva-Agredo J, Torres-Palma RA (2021) Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: a combined experimental and theoretical study. J Environ Chem Eng 9(4):105685

    Google Scholar 

  37. Hijab M, Parthasarathy P, Mackey HR, Al-Ansari T, McKay G(2021) Minimizing adsorbent requirements using multi-stage batch adsorption for malachite green removal using microwave date-stone activated carbons. Chem Eng Process Process Intensif 108318

    Google Scholar 

  38. Jones I, Zhu M, Zhang J, Zhang Z, Preciado-Hernandez J, Gao J, Zhang D (2021) The application of spent tyre activated carbons as low-cost environmental pollution adsorbents: a technical review. J Clean Prod 312:127566

    Google Scholar 

  39. Muazu ND, Jarrah N, Zubair M, Alagha O (2017) Removal of phenolic compounds from water using sewage sludge–based activated carbon adsorption: a review. Int J Environ Res Public Health 14:1–34

    Google Scholar 

  40. DjatiUtomo H, Ong XC, Lim SMS, Ong GCB, Li P (2013) Thermally processed sewage sludge for methylene blue uptake. Int Biodeterior Biodegrad 85:460–465

    CAS  Google Scholar 

  41. Hadi P, Xu M, Ning C, Sze C, Lin K, McKay G (2015) A critical review on preparation, characterization and utilization of sludge–derived activated carbons for wastewater treatment. Chem Eng J 260:895–906

    CAS  Google Scholar 

  42. Nunthaprechachan T, Pengpanich S, Hunsom M (2013) Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon. Chem Eng J 228:263–271

    CAS  Google Scholar 

  43. Li W-H, Yue Q-Y, Gao B-Y, Ma Z-H, Li Y-J, Zhao H-X (2011) Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chem Eng J 171:320–327

    CAS  Google Scholar 

  44. Streit AFM, Côrtes LN, Druzian SP, Godinho M, Collazzo GC, Perondi D, Dotto GL (2019) Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Sci Total Environ 660:277–287

    CAS  Google Scholar 

  45. Molina-Sabio M, Rodriguez-Reinoso F, Caturta F, Selles MJ (1995) Porosity in granular carbons activated with phosphoric acid. Carbon 33:1105–1113

    Google Scholar 

  46. Fengchen W, Ruling T, Rueyshin J (2005) Preparation of highly microporous carbons from fire wood by KOH activation for adsorption of dyes and phenols from water. Sep Purif Technol 47:10–19

    Google Scholar 

  47. Nabarawy TH, Mostafa MR, Youssef AM (1997) Activated carbons tailored to remove different pollutants from gas stream and from solution. Adsorpt Sci Technol 15:61–68

    Google Scholar 

  48. Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34:471–479

    CAS  Google Scholar 

  49. Smith KM, Fowler GD, Pullket S, Graham NJD (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43:2569–2594

    CAS  Google Scholar 

  50. Rio S, Faur-Brasquet C, Coq LL, Courcoux P, Cloirec PL (2005) Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation—application to air and water treatments. Chemosphere 58:423–437

    CAS  Google Scholar 

  51. Marquez MC, Costa C (1996) Biomass concentration in PACT process. Water Res 30(9):2079–2085

    CAS  Google Scholar 

  52. Tebbutt THY (1998) Principles of water quality control. Butterworth-Heinemann, Oxford

    Google Scholar 

  53. Chu H-C, Lin L-H, Liu H-J, Chen K-M (2013) Utilization of dried activated sludge for the removal of basic dye from aqueous solution. Desalin Water Treat 51(37–39):7074–7080. https://doi.org/10.1080/19443994.2013.772540

    Article  CAS  Google Scholar 

  54. Pala A, Tokat E (2002) Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res 36:2920–2925

    Google Scholar 

  55. Maderova Z, Baldikova E, Pospiskova K, Safarik I, Safarikova M (2016) Removal of dyes by adsorption on magnetically modified activated sludge. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-016-1001-8

  56. Djafer A, Djafer L, Maimoun B, Iddou A, Kouadri Mostefai S, Ayral A (2016) Reuse of waste activated sludge for textile dyeing wastewater treatment by biosorption: performance optimization and comparison. Water Environ J. https://doi.org/10.1111/wej.12218

  57. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    CAS  Google Scholar 

  58. Masigol MA, Moheb A, Mehrabani-Zeinabad A (2012) An experimental investigation into batch electrodialysis process for removal of sodium sulfate from magnesium stearate aqueous slurry. Desalination 300:12–18

    CAS  Google Scholar 

  59. Bonakdarpour B, Vyrides I, Stuckey DC (2011) Comparison of the performance of one stage and two stage sequential anaerobic-aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters. Int Biodeterior Biodegrad 65:591–599

    CAS  Google Scholar 

  60. Muda K, Aris A, Razman M, Ibrahim Z, Yahya A, Van Loosdrecht MCM, Ahmad A, Zaini M (2010) Development of granular sludge for textile wastewater treatment. Water Res 44:4341–4350

    CAS  Google Scholar 

  61. Liu Y, Tay J (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563

    CAS  Google Scholar 

  62. Kolekar YM, Nemade HN, Markad VL, Adav SS, Patole MS, Kodam KM (2012) Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules. Bioresour Technol 104:818–822

    CAS  Google Scholar 

  63. Franca RDG, Vieira A, Mata AMT, Carvalho GS, Pinheiro HM, Lourenço ND (2015) Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Water Res 85:327–336

    CAS  Google Scholar 

  64. Sadri Moghaddam S, Alavi Moghaddam MR (2016) Aerobic granular sludge for dye biodegradation in a sequencing batch reactor with anaerobic/aerobic cycles. CLEAN–Soil Air Water 4:438–443

    Google Scholar 

  65. Kee TC, Bay HH, Lim CK, Muda Z K (2015) Ibrahim, Development of bio-granules using selected mixed culture of decolorizing bacteria for the treatment of textile wastewater. Desalin Water Treat 54:132–139

    CAS  Google Scholar 

  66. Ibrahim Z, Amin MFM, Yahya A, Aris A, Muda K (2010) Characteristics of developed granules containing selected decolourising bacteria for the degradation of textile wastewater. Water Sci Technol 61:1279–1288

    CAS  Google Scholar 

  67. Hulshoff Pol LW, de Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389. https://doi.org/10.1016/j.watres.2003.12.002

  68. Lim SJ, Kim T-H (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 60:189–202. https://doi.org/10.1016/j.biombioe.2013.11.011

    Article  CAS  Google Scholar 

  69. Johnson A, Merilis G, Jason Hastings M, Palmer E, Fitts JP, Chidambaram D (2013) Reductive degradation of organic compounds using microbial nanotechnology. J Electrochem Soc 160:G27

    CAS  Google Scholar 

  70. Baxter-Plant VS, Mikheenko IP, Macaskie LE (2003) Sulphatereducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14(2):83–90

    CAS  Google Scholar 

  71. Hennebel T, Simoen H, De Windt W, Verloo M, Boon N, Verstraete W (2009) Biocatalyticdechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor. Biotechnol Bioeng 102(4):995–1002. https://doi.org/10.1002/bit.22138

    Article  CAS  Google Scholar 

  72. Hennebel T, Van Nevel S, Verschuere, Simon De Corte S, De Gusseme B, Cuvelier C, Fitts JP, van der Lelie D, Boon N, Verstraete W (2011) Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biotechnol 91:1435–1445. https://doi.org/10.1007/s00253-011-3329-9

  73. Oller I, Malato S, Sánchez-Pérez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontaminationda review. Sci Total Environ 409:4141–4166

    CAS  Google Scholar 

  74. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572

    CAS  Google Scholar 

  75. Kuo WG (1992) Decolorizing dye wastewater with Fenton’s reagent. Water Res 26:881–886

    CAS  Google Scholar 

  76. Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20:2099–2132

    CAS  Google Scholar 

  77. Chamarro E, Marco A, Esplugas S (2001) Use of Fenton reagent to improve organic chemical biodegradability. Water Res 35:1047–1051

    CAS  Google Scholar 

  78. Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55:35–43

    CAS  Google Scholar 

  79. Kiran S, Ali S, Asgher M (2013) Degradation and mineralization of azo dye reactive blue 222 by sequential photo-Fenton’s oxidation followed by aerobic biological treatment using white rot fungi. Bull Environ Contam Toxicol 90:208–215

    CAS  Google Scholar 

  80. Punzi M, Anbalagan A, Börner RA, Svensson BM, Jonstrup M, Mattiasson B (2015) Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: evaluation of toxicity and microbial community structure. Chem Eng J 270:290–299

    CAS  Google Scholar 

  81. Lodha B, Chaudhari S (2007) Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions. J Hazard Mater 148:459–466

    CAS  Google Scholar 

  82. Conatao M, Corso CR (1996) Studies of adsorptive interaction between Aspergillus niger and the reactive azo dye procion blue MX-G. Eclet Quim 21:97–102

    Google Scholar 

  83. Fu YZ, Viraraghavan T (2000) Removal of a dye from aqueous solution by the fungus Aspergillus niger. Wat Qual Res J Can 35:95–111

    CAS  Google Scholar 

  84. Paymann MA, Mehnaz MA (1998) Decolorization of textile effluent by Aspergillus niger (marine and terrestrial). Fresen Environ Bull 7:1–7

    Google Scholar 

  85. Ali N, Hameed A, Ahmed S, Khan AG (2008) Decolorization of structurally different textile dyes by Aspergillus niger SA1.World J Microbiol Biotechnol 24:1067–1072

    Google Scholar 

  86. Ogawa T, Shibata M, Yatome C, Idaka E (1988) Growth inhibition of Bacillus subtilis by basic dyes. Bull Environ Contam Toxicol 40:545–552

    CAS  Google Scholar 

  87. Sanayei Y, Ismail N, Teng TT, Morad N (2010) Studies on flocculating activity of bioflocculant from closed drainage system (CDS) and its application in reactive dye removal. Int J Chem 2:168–173

    CAS  Google Scholar 

  88. Gong W-X, Wang S-G, Sun X-F, Liu X-W, Yue Q-Y, Gao B-Y (2008) Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour Technol 99:4668–4674

    CAS  Google Scholar 

  89. Wang SG, Gong WX, Liu XW, Tian L, Yue QY, Gao BY (2007) Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater. Biochem Eng J 36:81–86

    CAS  Google Scholar 

  90. Zhang CL, Cui Y, Wang Y (2012) Bioflocculant produced from bacteria for decolorization, Cr removal and swine wastewater application. Sustain Environ Res 22:129–134

    CAS  Google Scholar 

  91. Sirianuntapiboon S, Srisornsak P (2007) Removal of disperse dyes from textile wastewater using bio-sludge. Bioresour Technol 98:1057–1066

    CAS  Google Scholar 

  92. Salehizadeh H, Shojaosadati SA (2001) Extracellular biopolymeric flocculants: recent trends and biotechnological importance. Biotechnol Adv 19:371–385

    CAS  Google Scholar 

  93. Hantula J, Bamford DH (1991) The efficiency of the protein dependent flocculation of Flavobacterium sp. Appl Microbiol Biotechnol 36:100–104

    CAS  Google Scholar 

  94. Levy N, Magdasi S, Bar-Or Y (1992) Physico-chemical aspects in flocculation of bentonite suspensions by a cyanobacterial bioflocculant. Water Res 26:249–254

    CAS  Google Scholar 

  95. Boonnorat J, Techkarnjanaruk S, Honda R, Angthong S, Boonapatcharoen N, Muenmee S, Prachanurak P (2018) Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater. Chemosphere 202:208–217. https://doi.org/10.1016/j.chemosphere.2018.03.084

  96. Muda K, Aris A, Razman M, Ibrahim Z, Van Loosdrecht MCM, Ahmad A, Zaini M (2011) The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Water Res 45:4711–4721

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharm Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raut, P., Pal, D., Singh, V.K. (2022). Dye Removal Using Activated Sludge. In: Khadir, A., Muthu, S.S. (eds) Biological Approaches in Dye-Containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-0526-1_1

Download citation

Publish with us

Policies and ethics

Navigation