Synergistic Activities of Fish Lectins with Other Antimicrobial Agents

  • Chapter
  • First Online:
Aquatic Lectins
  • 260 Accesses

Abstract

Lectins consist of a group of protein specifically characterized by carbohydrates binding ability with the carbohydrate recognition domain (CRD) in their molecular structure. These proteins are diverse in nature and found in several organisms consisting of prokaryotes, eukaryotes (plants and animals) and viruses. Several studies are carried out in fish lectins with special emphasis to its antimicrobial capabilities. The research on fish lectins has enhanced new aspects in the fish immunology and lectin biology. A vast variety of lectins were found in aquatic organisms with specific medical uses in recent decades; for example, lectins can be employed in cancer detection and treatment for cell adhesion, cytotoxicity and tumour cell identification. The main characteristic of lectins are the identification of carbohydrates and glycoconjugates in various organs in the animal body, and this property can help as biotechnological tools and in the field of diagnosis, pharmacological and therapeutic applications. Synergistic interactions between natural products and antibiotics could be an effective technique for combating bacterial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CRD:

Carbohydrate recognition domain

CTLs:

C-type lectins

MBL:

Mannose-binding lectin

MDR:

Multidrug resistance

MRSA:

Methicillin-resistant S. aureus

PRR:

Pattern recognition receptor

SBL:

Sialic acid-binding lectin

VRSA:

Vancomycin-resistant S. aureus

References

  • Absar N, Hasan S, Arisaka F (2008) Purification, characterization and N-terminal sequences alignment of a mannose specific protein purified from Potca fish, Tetraodon patoca. Protein J 27(2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Ahmed H, Du SJ, O’Leary N, Vasta GR (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific of a prototype galectin during early embryogenesis. Glycobiology 14(3):219–232

    Article  CAS  PubMed  Google Scholar 

  • Alhariri M, Majrashi MA, Bahkali AH, Almajed FS, Azghani AO, Khiyami MA, Halwani MA (2017) Efficacy of neutral and negatively charged liposome loaded gentamicin on planktonic bacteria and biofilm communities. Int J Nanomedicine 12:6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida GD, Godoi EP, Santos EC, de Lima LRP, de Oliveira ME (2013) Extrato aquoso de Allium sativum potencializa a ação dos antibióticos vancomicina, gentamicina e tetraciclina frente Staphylococcus aureus. J Appl Pharm Sci 34(4):487-492

    Google Scholar 

  • Ao J, Ding Y, Chen Y, Mu Y, Chen X (2015) Molecular characterization and biological effects of a C-type lectin-like receptor in large yellow croaker (Larimichthys crocea). Int J Mol Sci 16(12):29631–29642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bah CSF, Fang EF, Ng TB, Mros S, McConnell M, Bekhit AEDA (2011) Purification and characterization of a rhamnose-binding Chinook salmon roe lectin with antiproliferative activity toward tumor cells and nitric oxide-inducing activity toward murine macrophages. J Agric Food Chem 59(10):5720–5728

    Article  CAS  PubMed  Google Scholar 

  • Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Seilhamer JJ (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181(3):877–887

    Article  CAS  PubMed  Google Scholar 

  • Beck BH, Farmer BD, Straus DL, Li C, Peatman E (2012) Putative roles for a rhamnose binding lectin in Flavobacterium columnare pathogenesis in channel catfifish Ictalurus punctatus. Fish Shellfifish Immunol 33:1008–1015

    Article  CAS  Google Scholar 

  • Bonazzi M, Cossart P (2011) Impenetrable barriers or entry portals? The role of cell–cell adhesion during infection. J Cell Biol 195(3):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottazzi B, Doni A, Garlanda C, Mantovani A (2009) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28:157–183

    Article  CAS  Google Scholar 

  • Bourne Y, Ayouba A, Rougé P, Cambillau C (1994) Interaction of a legume lectin with two components of the bacterial cell wall. A crystallographic study. J Biol Chem 269(13):9429–9435

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach Barroso Coelho LC, Dos Santos M, Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleão TH, Dos Santos Correia MT (2018) Lectins as antimicrobial agents. J Appl Microbiol 125(5):1238–1252

    Article  CAS  PubMed  Google Scholar 

  • Brinchmann MF, Patel DM, Pinto N, Iversen MH (2018) Functional aspects of fish mucosal lectins—interaction with non-Self. Molecules 23(5):1119. https://doi.org/10.3390/molecules23051119

    Article  CAS  PubMed Central  Google Scholar 

  • Bun Ng T, Chi Fai Cheung R, Cheuk Wing Ng C, Fei Fang E, Ho Wong J (2015) A review of fish lectins. Curr Protein Pept Sci 16(4):337–351

    Article  CAS  Google Scholar 

  • Cheesman MJ, Ilanko A, Blonk B, Cock IE (2017) Develo** new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11(22):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB (2015) Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 99(9):3755–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleao TH, Correia MTDS (2017) Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complementary Alternat Med 2017:1594074

    Article  Google Scholar 

  • Colquhoun DJ, Sørum H (2001) Temperature dependent siderophore production in Vibrio salmonicida. Microb Pathog 31(5):213–219

    Article  CAS  PubMed  Google Scholar 

  • Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  CAS  PubMed  Google Scholar 

  • Coriolano MC, De Melo CML, Santos AJG, Pereira VRA, Coelho LCBB (2012) Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes. Scand J Immunol 76(6):567–572

    Article  CAS  PubMed  Google Scholar 

  • Dam TK, Brewer CF (2010) Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20(3):270–279

    Article  CAS  PubMed  Google Scholar 

  • Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263(20):9557–9560

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Sinha B, Bhattacharya B, Chatterjee B, Mazumder S (2005) Characterization of a galactose binding serum lectin from the Indian catfish, Clarias batrachus: possible involvement of fish lectins in differential recognition of pathogens. Comp Biochem Physiol Part C Toxicol Pharmacol 141(1):76–84

    Article  CAS  Google Scholar 

  • Elumalai P, Rubeena AS, Arockiaraj J, Wongpanya R, Cammarata M, Ringø E, Vaseeharan B (2019) The role of lectins in finfish: a review. Rev Fish Sci Aquac 27(2):152–169

    Article  Google Scholar 

  • Elumalai P, Rubeena AS, Lakshmi S, Anbazhagan V, Arockiaraj J, Divya M, Vaseeharan B (2021) Shrimp lectin–conjugated copper sulfide nanoparticles enhance immune response and gene expression in Etroplus suratensis infected with Aeromonas hydrophila. Aquac Int 29(3):1103–1120

    Article  CAS  Google Scholar 

  • Ewart KV, Johnson SC, Ross NW (1999) Identification of a pathogen-binding lectin in salmon serum. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 123(1):9–15

    CAS  Google Scholar 

  • Ewart KV, Johnson SC, Ross NW (2001) Lectins of the innate immune system and their relevance to fish health. ICES J Mar Sci 58:380–385

    Article  CAS  Google Scholar 

  • Ferreira RS, Napoleão TH, Santos AFS, Sá RA, Carneiro-da-Cunha MG, Morais MMC, Paiva PMG (2011) Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera. Lett Appl Microbiol 53(2):186–192. https://doi.org/10.1111/j.1472-765x.2011.03089

    Article  CAS  PubMed  Google Scholar 

  • Ferreira GRS, de Santana Brito J, Procopio TF, de Lima Santos ND, de Lima BJRC, Coelho LCBB et al (2018) Antimicrobial potential of Alpinia purpurata lectin (ApuL): growth inhibitory action, synergistic effects in combination with antibiotics, and antibiofilm activity. Microb Pathog 124:152–162

    Article  CAS  PubMed  Google Scholar 

  • Fock WL, Chen CL, Lam TJ, Sin YM (2001) Roles of an endogenous serum lectin in the immune protection of blue gourami, Trichogaster trichopterus (Pallus) against Aeromonas hydrophila. Fish Shellfish Immunol 11(2):101–113

    Article  CAS  PubMed  Google Scholar 

  • Fuller JR, Pitzer JE, Godwin U, Albertino M, Machon BD, Kearse KP, McConnell TJ (2004) Characterization of the molecular chaperone calnexin in the channel catfish, Ictalurus punctatus, and its association with MHC class II molecules. Dev Comp Immunol 28(6):603–617

    Article  CAS  PubMed  Google Scholar 

  • Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113(3):236–247

    Article  CAS  PubMed  Google Scholar 

  • Gleeson PA (2008) The sweet side of immunology: glycobiology of the immune system. Immunol Cell Biol 86(7):562

    Article  CAS  PubMed  Google Scholar 

  • Hudak JE, Bertozzi CR (2014) Glycotherapy: new advances inspire a re-emergence of glycans in medicine. Chem Biol 21(1):16–37

    Article  CAS  PubMed  Google Scholar 

  • Iordache F, Ionita M, Mitrea LI, Fafaneata C, Pop A (2015) Antimicrobial and antiparasitic activity of lectins. Curr Pharm Biotechnol 16(2):152–161

    Article  CAS  PubMed  Google Scholar 

  • Iovleva A, Bonomo RA (2017) The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med 24(suppl_1):S44–S51

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung WK, Park PJ, Kim SK (2003) Purification and characterization of a new lectin from the hard roe of skipjack tuna, Katsuwonus pelamis. Int J Biochem Cell Biol 35(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Kales S, Fujiki K, Dixon B (2004) Molecular cloning and characterization of calreticulin from rainbow trout (Oncorhynchus mykiss). Immunogenetics 55(10):717–723

    Article  CAS  PubMed  Google Scholar 

  • Khan T, Gurav P (2018) PhytoNanotechnology: enhancing delivery of plant based anti-cancer drugs. Front Pharmacol 8:1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kilpatrick DC (2002) Animal lectins: a historical introduction and overview. Biochim Biophys Acta 1572(2–3):187–197

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Nam BH, Kim JW, Park HJ, Song JH, Park CI (2011) Molecular characterisation and expression analysis of a fish-egg lectin in rock bream, and its response to bacterial or viral infection. Fish Shellfish Immunol 31(6):1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 277(33):29686–29697

    Article  CAS  PubMed  Google Scholar 

  • Ling SHM, Wang XH, Lim TM, Leung KY (2001) Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett 194:239–243

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang Q, Peng H, Zhang WZ (2012) Animal lectins: potential antitumor therapeutic targets in apoptosis. Appl Biochem Biotechnol 168(3):629–637

    Article  CAS  PubMed  Google Scholar 

  • Mody R, Antaram Joshi S, Chaney W (1995) Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods 33(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Momoh MA, Mora AT, Ogbonna JDN, Agboke AA (2014) In vitro evaluation of antimicrobial activity of cat fish slime mucin on selected micro-organisms by agar diffusion method. Pak J Zool 46(6):1747–1751

    CAS  Google Scholar 

  • Moura M, Procópio T, Ferreira G, Alves R, Sá R, Paiva P, Napoleão T (2021) Anti-staphylococcal effects of Myracrodruon urundeuva lectins on nonresistant and multidrug resistant isolates. J Appl Microbiol 130(3):745–754

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Jiang Q-X (2014) Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505(7481):103–107

    Article  PubMed  CAS  Google Scholar 

  • Muslim SN (2015) Improving of antibacterial activity for antibiotics by purified and characterized lectin from Acinetobacter baumannii. Iraqi J Biotechnol 14(1):9

    Google Scholar 

  • Nakamura O, Watanabe M, Ogawa T, Muramoto K, Ogawa K, Tsutsui S, Kamiya H (2012) Galectins in the abdominal cavity of the conger eel Conger myriaster participate in the cellular encapsulation of parasitic nematodes by host cells. Fish Shellfish Immunol 33(4):780–787

    Article  CAS  PubMed  Google Scholar 

  • Ngai PH, Ng TB (2007) A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum). Appl Microbiol Biotechnol 74(2):433–438

    Article  CAS  PubMed  Google Scholar 

  • Ngai PH, Ng TB (2007) A lectin with antifungal and mitogenic activities from red cluster pepper (Capsicum frutescens) seeds. Appl Microbiol Biotechnol 74(2):366–371

    Article  CAS  PubMed  Google Scholar 

  • Nickol ME, Ciric J, Falcinelli SD, Chertow DS, Kindrachuk J (2019) Characterization of host and bacterial contributions to lung barrier dysfunction following co-infection with 2009 pandemic influenza and methicillin resistant Staphylococcus aureus. Viruses 11(2):116

    Article  CAS  PubMed Central  Google Scholar 

  • Nita-Lazar M, Mancini J, Feng C, González-Montalbán N, Ravindran C, Jackson S, Vasta GR (2016) The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. Dev Comp Immunol 55:241–252

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Watanabe M, Naganuma T, Muramoto K (2011) Diversifified carbohydrate-binding lectins from marine resources. J Amino Acids 2011:838914. https://doi.org/10.4061/2011/838914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira SMS, Falcão-Silva VS, Siqueira-Junior JP, de Costa MJC, de Diniz MFF (2011) Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica L., Anacardiaceae) peel. Rev Brasil Farmaco 21(1):190–193

    Article  Google Scholar 

  • Ottinger CA, Johnson SC, Ewart KV, Brown LL, Ross NW (1999b) Enhancement of anti-Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin. Comp Biochem Physiol C 123(1):53–59

    CAS  PubMed  Google Scholar 

  • Pan S, Tang J, Gu X (2010) Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Vet Immunol Immunopathol 133(2–4):154–164

    Article  CAS  PubMed  Google Scholar 

  • Procópio TF, Moura MC, Bento EF, Soares T, Coelho LC, Bezerra RP, Napoleão TH (2019) Looking for alternative treatments for bovine and caprine mastitis: evaluation of the potential of Calliandra surinamensis leaf pinnulae lectin (CasuL), both alone and in combination with antibiotics. MicrobiologyOpen 8(11):e869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabinovich GA, Rubinstein N, Toscano MA (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta 1572(2–3):274–284

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Van Kooyk Y, Cobb BA (2012) Glycobiology of immune responses. Ann N Y Acad Sci 1253:1–15

    Article  CAS  PubMed  Google Scholar 

  • Russell S, Lumsden JS (2005) Function and heterogeneity of fish lectins. Vet Immunol Immunopathol 108(1–2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Russell S, Young KM, Smith M, Hayes MA, Lumsden JS (2008) Cloning, binding properties, and tissue localization of rainbow trout (Oncorhynchus mykiss) ladderlectin. Fish Shellfish Immunol 24(6):669–683

    Article  CAS  PubMed  Google Scholar 

  • Santos VF, Araújo AC, Silva AL, Almeida DV, Freitas PR, Santos AL, Bondan E (2020) Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int J Biol Macromol 146:841–852

    Article  CAS  PubMed  Google Scholar 

  • Santos VF, Araújo AC, Freitas PR, Silva AL, Santos AL, da Rocha BAM, Coutinho HD (2021) Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microb Pathog 152:104639

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Chattopadhyay MK, Grossart H-P (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon N (2008) Lectins: past, present and future1. Biochem Soc Trans 36(6):1457–1460

    Article  CAS  PubMed  Google Scholar 

  • Shiina N, Tateno H, Ogawa T, Muramoto K, Saneyoshi M, Kamiya H (2002) Isolation and characterization of L-rhamnose-binding lectins from chum salmon (Oncorhynchus keta) eggs. Fish Sci 68(6):1352–1366

    Article  CAS  Google Scholar 

  • da Silva CDC, Coriolano MC, da Silva Lino MA, de Melo CML, de Souza Bezerra R, de Carvalho EVMM et al (2012) Purification and characterization of a mannose recognition lectin from Oreochromis niloticus (Tilapia Fish): Cytokine production in mice splenocytes. Appl Biochem Biotechnol 166(2):424–435

    Article  CAS  PubMed  Google Scholar 

  • da Silva Lino MA, Bezerra RF, da Silva CDC, Carvalho EVMM, Coelho LCBB (2014) Fish lectins: a brief review. In: Jen OP (ed) Advances in zoology research. Nova Science, Hauppauge, pp 95–114

    Google Scholar 

  • Silva RR, Silva CR, Santos VF, Barbosa CR, Muniz DF, Santos AL et al (2019) Parkia platycephala lectin enhances the antibiotic activity against multi-resistant bacterial strains and inhibits the development of Haemonchus contortus. Microb Pathog 135:103629

    Article  CAS  PubMed  Google Scholar 

  • Silva-Angulo A, Zanini S, Rosenthal A, Rodrigo D, Klein G, Martínez A (2015) Combined effect of carvacrol and citral on the growth of Listeria monocytogenes and Listeria innocua and on the occurrence of damaged cells. Food Control 53:156–162

    Article  CAS  Google Scholar 

  • de Souza Feitosa Lima IM, Zagmignan A, Santos DM, Maia HS, dos Santos Silva L, da Silva Cutrim B, Napoleão TH (2019) Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci Rep 9(1):1–14

    Article  CAS  Google Scholar 

  • Sun YD, Fu L-D, Jia Y-P, Du X-J, Wang Q, Wang Y-H, Zhao X-F, Yu X-Q, Wang J-X (2008) A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol Immunol 45:348–361

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Peatman E, Li C, Liu S, Jiang Y, Zhou Z, Liu Z (2012) Transcriptomic signatures of attachment, NF-κB suppression and IFN stimulation in the catfish gill following columnaris bacterial infection. Dev Comp Immunol 38(1):169–180

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H (2003) Molecular diversity of skin mucus lectins in fish. Comp Biochem Physiol B Biochem Mol Biol 136(4):723–730

    Article  PubMed  CAS  Google Scholar 

  • TaÅŸtan Y, Sönmez AY (2020) A review on antibacterial effects of fish skin mucus and fish lectins. Menba Kastamonu Ãœniversitesi Su Ãœrünleri Fakültesi Dergisi 6(2):100–107

    Google Scholar 

  • Tasumi S, Yang WJ, Usami T, Tsutsui S, Ohira T, Kawazoe I et al (2004) Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Dev Comp Immunol 28(4):325–335

    Article  CAS  PubMed  Google Scholar 

  • Tateno H (2010) SUEL-related lectins, a lectin family widely distributed throughout organisms. Biosci Biotechnol Biochem 74(6):1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Tateno H, Ogawa T, Muramoto K, Kamiya H, Saneyoshi M (2002) Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci Biotechnol Biochem 66(3):604–612

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Watanabe Y, Tateno H, Naganuma T, Ogawa T, Muramoto K, Kamiya H (2007) Structural characterization of a rhamnose-binding glycoprotein (lectin) from Spanish mackerel (Scomberomorous niphonius) eggs. Biochim Biophys Acta 1770(4):617–629

    Article  CAS  PubMed  Google Scholar 

  • Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VH, Takebayashi Y, Spencer J (2019) β-Lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 431(18):3472–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui S, Okamoto M, Ono M, Suetake H, Kikuchi K, Nakamura O, Watanabe T (2011) A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein. Glycobiology 21(12):1580–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui S, Dotsuta Y, Ono A, Suzuki M, Tateno H, Hirabayashi J, Nakamura O (2015) A C-type lectin isolated from the skin of Japanese bullhead shark (Heterodontus japonicus) binds a remarkably broad range of sugars and induces blood coagulation. J Biochem 157(5):345–356

    Article  CAS  PubMed  Google Scholar 

  • Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ (2014) Bitter-sweet symphony: glycan–lectin interactions in virus biology. FEMS Microbiol Rev 38(4):598–632

    Article  PubMed  CAS  Google Scholar 

  • Vasta GR, Ahmed H (2008) Animal lectins: A functional view. CRC Press, Boca Raton

    Book  Google Scholar 

  • Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Amzel LM (2011) Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev Comp Immunol 35(12):1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277

    Google Scholar 

  • Wang L, Fouts DE, Stärkel P, Hartmann P, Chen P, Llorente C et al (2016) Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19(2):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Tateno H, Nakamura-Tsuruta S, Kominami J, Hirabayashi J, Nakamura O, Muramoto K (2009) The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol 33(2):187–197

    Article  CAS  PubMed  Google Scholar 

  • Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci 93(13):6737–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousif AN, Albright LJ, Evelyn TPT (1995) Interaction of coho salmon Oncorhynchus kisutch egg lectin with the fish pathogen Aeromonas salmonicida. Dis Aquat Org 21(3):193–199

    Article  Google Scholar 

  • Zhang XW, Xu WT, Wang XW, Mu Y, Zhao XF, Yu XQ, Wang JX (2009) A novel C-type lectin with two CRD domains from Chinese shrimp Fenneropenaeus chinensis functions as a pattern recognition protein. Mol Immunol 46(8–9):1626–1637

    Article  CAS  PubMed  Google Scholar 

  • Zhang XW, Wang Y, Wang XW, Wang L, Mu Y, Wang JX (2016) A C-type lectin with an immunoglobulin-like domain promotes phagocytosis of hemocytes in crayfish Procambarus clarkii. Sci Rep 6(1):1–12

    CAS  Google Scholar 

Download references

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Salam Rubeena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisha, P., Sharma, A., Pandiyan, P., Rubeena, A.S. (2022). Synergistic Activities of Fish Lectins with Other Antimicrobial Agents. In: Elumalai, P., Vaseeharan, B., Lakshmi, S. (eds) Aquatic Lectins. Springer, Singapore. https://doi.org/10.1007/978-981-19-0432-5_11

Download citation

Publish with us

Policies and ethics

Navigation