Ion Track-Based Nanofluidic Biosensors

  • Chapter
  • First Online:
Miniaturized Biosensing Devices

Abstract

During the past decade, solid-state nanopores and nanochannels (SSNs) have emerged as a new class of devices for the creation of nanofluidic platforms with diverse applications. In particular, the precise control of ion transport achieved by SSNs paved the way to the development of specific and efficient biological and chemical iontronic sensors with promising technological potential. As biological ion channels play crucial roles in the regulation of vital processes for human cells, they have been a huge source of inspiration toward the design and construction of more sophisticated SSN devices. Today, the academic research on the topic has evolved to many concrete and practical usages, reflecting the potential commercial value of SSNs. Among the different methods available for the nanofabrication of single SSNs, high-energy ion beam (~MeV–GeV) techniques coupled to etching chemical processes are one of the most used due to their control on the size and geometry of the pore. The combination of this advanced nanofabrication technology and different surface functionalization strategies to confer specific target moiety responsiveness to the SSNs were the key point for the extraordinary advances in the area. This chapter aims to provide a closer look at the fabrication of SSNs by the ion-track-etching technology and the functionalization strategies in order to build SSNs for biosensing purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achenbach J, Chiuman W, Cruz R, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. J Am Chem Soc 130:16351

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Neumann R, Ensinger W (2010a) Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. ACS Nano 4:7267

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Yameen B, Cervera J, Ramírez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010b) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132:8338

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Yameen B, Cervera J, Ramírez P, Neumann R, Ensinger W, Knoll W, Azzaroni O, Ramı P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010c) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132:8338

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Nasir S, Ensinger W (2016) Stereoselective detection of amino acids with protein-modified single asymmetric nanopores. Electrochim Acta 215:231

    Article  CAS  Google Scholar 

  • Apel PY, Fink D (2004) In: Fink D (ed) Transport processes in ion-irradiated polymers. Springer-Verlag, Berlin/Heidelberg, pp 147–202

    Chapter  Google Scholar 

  • Apel PY, Blonskaya IV, Dmitriev SN, Orelovitch OL, Presz A, Sartowska BA (2007) Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology 18:305302

    Article  CAS  Google Scholar 

  • Apel PY, Blonskaya IV, Levkovich NV, Orelovich OL (2011) Asymmetric track membranes: relationship between nanopore geometry and ionic conductivity. Pet Chem 51:555

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications. Wiley

    Google Scholar 

  • Brett CMA, Oliveira Brett AM (1993) Electrochemistry: principles, methods, and applications. Oxford University Press

    Google Scholar 

  • Buchsbaum SF, Nguyen G, Howorka S, Siwy ZS (2014) DNA-modified polymer pores allow pH-and voltage-gated control of channel flux. J Am Chem Soc 136:9902

    Article  CAS  PubMed  Google Scholar 

  • Cervera J, Schiedt B, Neumann R, Mafé S, Ramírez P (2006) Ionic conduction, rectification, and selectivity in single conical nanopores. J Chem Phys 124:104706

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zhou D, Meng Z, Zhai J (2016) An ion-gating multinanochannel system based on a copper-responsive self-cleaving DNAzyme. Chem Commun 52:10020

    Article  CAS  Google Scholar 

  • De Leo M, Pereira FC, Moretto LM, Scopece P, Polizzi S, Ugo P (2007) Towards a better understanding of gold electroless deposition in track-etched templates. Chem Mater 19:5955

    Article  CAS  Google Scholar 

  • Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831

    Article  Google Scholar 

  • Ding D, Gao P, Ma Q, Wang D, **a F (2019) Biomolecule-functionalized solid-state ion nanochannels/nanopores: features and techniques. Small 15:1804878

    Article  CAS  Google Scholar 

  • Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101(43):15275–15278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1:0076

    Article  CAS  Google Scholar 

  • Gao J, Guo W, Feng D, Wang H, Zhao D, Jiang L (2014) High-performance ionic diode membrane for salinity gradient power generation. J Am Chem Soc 136:12265

    Article  CAS  PubMed  Google Scholar 

  • George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111

    Article  CAS  PubMed  Google Scholar 

  • Gilles FM, Boubeta FM, Azzaroni O, Szleifer I, Tagliazucchi M (2018) Modulation of polyelectrolyte adsorption on nanoparticles and nanochannels by surface curvature. J Phys Chem C 122:6669

    Article  CAS  Google Scholar 

  • Gleich A, Pade C, Petschow U, Pissarskoi E (2010) Potentials and trends in biomimetics. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Guo J, Yang L, Xu H, Zhao C, Dai Z, Gao Z, Song Y (2019) Biomineralization-driven ion gate in TiO2 nanochannel arrays for cell H2S sensing. Anal Chem 91:13746

    Article  CAS  PubMed  Google Scholar 

  • Harrell CC, Kohli P, Siwy Z, Martin CR (2004) DNA-nanotube artificial ion channels. J Am Chem Soc 126:15646

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Khodakov D, Wang C, Zhang DY (2016) Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev 105:3–19

    Article  CAS  PubMed  Google Scholar 

  • Kumari B, John D, Hoffmann P, Spende A, Toimil-Molares ME, Trautmann C, Hess C, Ruff P, Schulze M, Stark R, Buntkowsky G, Andrieu-Brunsen A, Gutmann T (2018) Surface enhanced DNP assisted solid-state NMR of functionalized SiO2 coated polycarbonate membranes. Z Phys Chem 232:1173

    Article  CAS  Google Scholar 

  • Laucirica G, Marmisollé WA, Toimil-Molares ME, Trautmann C, Azzaroni O (2019a) Redox-driven reversible gating of solid-state nanochannels. ACS Appl Mater Interfaces 11:30001

    Article  CAS  PubMed  Google Scholar 

  • Laucirica G, Pérez-Mitta G, Toimil-Molares MEME, Trautmann C, Marmisollé WAWA, Azzaroni O (2019b) Amine-phosphate specific interactions within nanochannels: binding behavior and nanoconfinement effects. J Phys Chem C 123:28997

    Article  CAS  Google Scholar 

  • Laucirica G, Cayón VM, Toum Terrones Y, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O (2020a) Electrochemically addressable nanofluidic devices based on PET nanochannels modified with electropolymerized poly-o-aminophenol films. Nanoscale 12:6002

    Article  CAS  PubMed  Google Scholar 

  • Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O (2020b) Polyaniline for improved blue energy harvesting: highly rectifying nanofluidic diodes operating in hypersaline conditions via one-step functionalization. ACS Appl Mater Interfaces 12:28148

    Article  CAS  PubMed  Google Scholar 

  • Laucirica G, Albesa AG, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O (2020c) Shape matters: enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy 71:104612

    Article  CAS  Google Scholar 

  • Laucirica G, Toum Terrones Y, Cayón V, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O (2020d) High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Nanoscale 12:18390

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Mutharasan R (2005) In: Wilson JS (ed) Sensor technology handbook. Elsevier, pp 161–180

    Chapter  Google Scholar 

  • Li P, Kong X-Y, **e G, **ao K, Zhang Z, Wen L, Jiang L (2016) Adenosine‐activated nanochannels inspired by G‐protein‐coupled receptors. Small 12:1854

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Jiang Y, Zhou Y, **a F, Guo W, Jiang L (2013) Inside cover: two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures (Angew. Chem. Int. Ed. 7/2013). Angew Chemie - Int Ed 52:1842

    Article  Google Scholar 

  • Liu M, Zhang H, Li K, Heng L, Wang S, Tian Y, Jiang L (2015) A bio‐inspired potassium and pH responsive double‐gated nanochannel. Adv Funct Mater 25:421

    Article  CAS  Google Scholar 

  • Liu N, Hou R, Gao P, Lou X, **a F (2016) Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141:3626

    Article  CAS  PubMed  Google Scholar 

  • Lou X, Song Y, Liu R, Cheng Y, Dai J, Chen Q, Gao P, Zhao Z, **a F (2020) Enzyme and AIEgens modulated solid‐state nanochannels: in situ and noninvasive monitoring of H2O2 released from living cells. Small Methods 4:1900432

    Article  CAS  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103

    Article  CAS  PubMed  Google Scholar 

  • Ma T, Gaigalas P, Lepoitevin M, Plikusiene I, Bechelany M, Janot J-M, Balanzat E, Balme S (2018) Impact of polyelectrolyte multilayers on the ionic current rectification of conical nanopores. Langmuir 34:3405

    Article  CAS  PubMed  Google Scholar 

  • Martin CR, Nishizawa M, Jirage K, Kang M, Lee SB (2001) Controlling ion‐transport selectivity in gold nanotubule membranes. Adv Mater 13:1351

    Article  CAS  Google Scholar 

  • Muench F, Kunz U, Neetzel C, Lauterbach S, Kleebe H-J, Ensinger W (2011) 4-(Dimethylamino) pyridine as a powerful auxiliary reagent in the electroless synthesis of gold nanotubes. Langmuir 27:430

    Article  CAS  PubMed  Google Scholar 

  • Nasir S, Ali M, Ramirez P, Gómez V, Oschmann B, Muench F, Tahir MN, Zentel R, Mafe S, Ensinger W (2014) Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications. ACS Appl Mater Interfaces 6:12486

    Article  CAS  PubMed  Google Scholar 

  • Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380:1–95

    Article  CAS  Google Scholar 

  • Ohno I (1991) Electrochemistry of electroless plating. Mater Sci Eng A 146:33

    Article  Google Scholar 

  • Pérez-Mitta G, Tuninetti JS, Knoll W, Trautmann C, Toimil-Molares ME, Azzaroni O (2015a) Polydopamine meets solid-state nanopores: a bioinspired integrative surface chemistry approach to tailor the functional properties of nanofluidic diodes. J Am Chem Soc 137:6011

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Mitta G, Albesa AG, Knoll W, Trautmann C, Toimil-Molares ME, Azzaroni O (2015b) Host–guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes. Nanoscale 7:15594

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Mitta G, Marmisollé WA, Trautmann C, Toimil-Molares ME, Azzaroni O (2015c) Nanofluidic diodes with dynamic rectification properties stemming from reversible electrochemical conversions in conducting polymers. J Am Chem Soc 137:15382

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Mitta G, Burr L, Tuninetti JS, Trautmann C, Toimil-Molares ME, Azzaroni O (2016) Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. Nanoscale 8:1470

    Article  PubMed  Google Scholar 

  • Pérez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O (2017a) Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction of biological, chemical and physical stimuli. Chem Sci 8:890

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Mitta G, Albesa A, Gilles FM, Toimil-Molares ME, Trautmann C, Azzaroni O (2017b) Noncovalent approach toward the construction of nanofluidic diodes with ph-reversible rectifying properties: insights from theory and experiment. J Phys Chem C 121:9070

    Article  CAS  Google Scholar 

  • Pérez-Mitta G, Marmisollé WA, Trautmann C, Toimil-Molares ME, Azzaroni O (2017c) An all-plastic field-effect nanofluidic diode gated by a conducting polymer layer. Adv Mater 29:1700972

    Article  CAS  Google Scholar 

  • Pérez-Mitta G, Marmisolle WA, Burr L, Toimil-Molares ME, Trautmann C, Azzaroni O (2018a) Proton-gated rectification regimes in nanofluidic diodes switched by chemical effectors. Small 14:1703144

    Article  CAS  Google Scholar 

  • Pérez-Mitta G, Peinetti AS, Cortez ML, Toimil-Molares ME, Trautmann C, Azzaroni O (2018b) Highly sensitive biosensing with solid-state nanopores displaying enzymatically reconfigurable rectification properties. Nano Lett 18:3303

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O (2019) Molecular design of solid-state nanopores: fundamental concepts and applications. Adv Mater 31:1901483

    Article  CAS  Google Scholar 

  • Ruff P, Carrillo-Solano M, Ulrich N, Hadley A, Kluth P, Toimil-Molares ME, Trautmann C, Hess C (2018) Nanoscale structuring in confined geometries using atomic layer deposition: conformal coating and nanocavity formation. Z Phys Chem 232:1147

    Article  CAS  Google Scholar 

  • Sander MS, Côté MJ, Gu W, Kile BM, Tripp CP (2004) Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16:2052

    Article  CAS  Google Scholar 

  • Schoch RB, Renaud P (2005) Ion transport through nanoslits dominated by the effective surface charge. Appl Phys Lett 86:253111

    Article  CAS  Google Scholar 

  • Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735

    Article  CAS  Google Scholar 

  • Siwy Z, Apel P, Dobrev D, Neumann R, Spohr R, Trautmann C, Voss K (2003) Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. Elsevier BV 208:143

    CAS  Google Scholar 

  • Sobel N, Hess C, Lukas M, Spende A, Stühn B, Toimil-Molares ME, Trautmann C (2015) Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition. Beilstein J. Nanotechnol. 6:472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spende A, Sobel N, Lukas M, Zierold R, Riedl JC, Gura L, Schubert I, Moreno JMM, Nielsch K, Stühn B, Hess C, Trautmann C, Toimil-Molares ME (2015) TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. Nanotechnol 26:335301

    Article  CAS  Google Scholar 

  • Spohr R (1990) Ion tracks and microtechnology: principles and applications. Vieweg+Teubner Verlag

    Book  Google Scholar 

  • Sun Z, Liao T, Zhang Y, Shu J, Zhang H, Zhang GJ (2016) Biomimetic nanochannels based biosensor for ultrasensitive and label-free detection of nucleic acids. Biosens Bioelectron 86:194

    Article  CAS  PubMed  Google Scholar 

  • Tagliazucchi M, Szleifer I (2016) Chemically modified nanopores and nanochannels. Elsevier Inc.

    Google Scholar 

  • Tan F, Leung PHM, Liu Z, Zhang Y, **ao L, Ye W, Zhang X, Yi L, Yang M (2011) A PDMS microfluidic impedance immunosensor for E. coli O157: H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sensors Actuators B Chem 159:328

    Article  CAS  Google Scholar 

  • Tian Y, Hou X, Wen L, Guo W, Song Y, Sun H, Wang Y, Jiang L, Zhu D (2010) A biomimetic zinc activated ion channel. Chem Commun 46:1682

    Article  CAS  Google Scholar 

  • Tian Y, Hou X, Jiang L (2011) Biomimetic ionic rectifier systems: asymmetric modification of single nanochannels by ion sputtering technology. J Electroanal Chem 656:231

    Article  CAS  Google Scholar 

  • Toimil-Molares ME (2012) Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3:860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trautmann C (2009) In: Hellborg R, Whitlow HJ, Zhang Y (eds) Ion beams in nanoscience and technology. Springer-Verlag, Berlin/Heidelberg, pp 369–387

    Chapter  Google Scholar 

  • Trautmann C, Brüchle W, Spohr R, Vetter J, Angert N (1996) Pore geometry of etched ion tracks in polyimide. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 111:70

    Article  CAS  Google Scholar 

  • Tu J, Zhou Z, Liu Y, Li T, Lu S, **ao L, **ao P, Zhang G, Sun Z (2021) Nanochannel-based sensor for the detection of lead ions in traditional Chinese medicine. RSC Adv 11:3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlassiouk I, Takmakov P, Smirnov S (2005) Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir 21:4776

    Article  CAS  PubMed  Google Scholar 

  • Vlassiouk I, Kozel TR, Siwy ZS (2009) Biosensing with nanofluidic diodes. J Am Chem Soc 131:8211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YG, Hou X, Guo W, **a F, Nie FQ, Dong H, Tian Y, Wen LP, Wang L, Cao LX, Yang Y, Xue JM, Song YL, Liu DS, Jiang L (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131:7800

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang D, Willner I, Tian Y, Jiang L (2018) Smart DNA hydrogel integrated nanochannels with high ion flux and adjustable selective ionic transport. Angew Chemie Int Ed 57:7790

    Article  CAS  Google Scholar 

  • Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5:1287

    Article  CAS  PubMed  Google Scholar 

  • Yameen B, Ali M, Álvarez M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) A facile route for the preparation of azide-terminated polymers. “Clicking” polyelectrolyte brushes on planar surfaces and nanochannels. Polym Chem 1:183

    Article  CAS  Google Scholar 

  • Zhang Z, Wen L, Jiang L (2018) Bioinspired smart asymmetric nanochannel membranes. Chem Soc Rev 47:322

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Zheng Y-B, Cai S-L, Weng Y-H, Cao S-H, Yang J-L, Li Y-Q (2013) Sugar-stimulated robust nanodevice: 4-carboxyphenylboronic acid modified single glass conical nanopores. Electrochem Commun 36:71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Azzaroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toum Terrones, Y. et al. (2022). Ion Track-Based Nanofluidic Biosensors. In: Chandra, P., Mahato, K. (eds) Miniaturized Biosensing Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-9897-2_3

Download citation

Publish with us

Policies and ethics

Navigation