Mutation Breeding in Date Palm (Phoenix dactylifera L.)

  • Chapter
  • First Online:
Mutation Breeding for Sustainable Food Production and Climate Resilience

Abstract

Date palm (Phoenix dactylifera L.) is one of the oldest fruit crops grown in the arid regions of the Arabian Peninsula, North Africa, and the Middle East. The date palm fruit is pivotal of the economy and the social life of the date palm producing regions. Currently, there are various challenges opposed date palm development, processing, and marketing such as the presence of low-quality cultivars, poor farm management, insect and diseases pest infestations control, deficiencies in harvesting, processing, shortage of qualified and national trained staff and laborers, insufficient research and development activities. To overcome these challenges, there is a need for alternative approach to conventional plant breeding. Genetic enhancement of the date palm by radiation induced mutagenesis represents a major opportunity since it increases the genetic variability to sustain food security. Gamma-irradiated date palm callus regenerated plants resistant to Bayoud toxin isolated from the causal fungus Fusarium oxysporum f.sp. albedinis. Several selected putative mutants resistant to Bayoud disease have maintained resistance underfield conditions. This chapter presents an overview of induced mutation and their application date palm improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abed F, Saka H, Amara A, Kermiche A (1999) Effet de differentes doses de cobalt 60 sur les cals embryogènes de Deglet nour (Phoenix dactylifera L.). Recherche Agronomique 5:73–80

    Google Scholar 

  • Abed F, Yatta D, Amara B et al (2014) Somatic embryogenesis from offshoot of different cultivars of date palm (Phoenix dactylifera L.) of three regions of southern Algeria. In: Farooq SA, Abed R, Baqir S (eds) Biotechnology and conservation of species from arid regions, vol 1. NOVA publishers, New York, pp 275–286

    Google Scholar 

  • Abul-Soad AA, Jain SM, Jatoi MA (2017) Biodiversity and conservation of date palm. In: Ahuja MR, Jain SM (eds) Biodiversity and conservation of woody plants. Sustainable development and biodiversity, vol 17. Springer, Cham, pp 313–353

    Chapter  Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations – a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Akter N, Islam MR (2017) Heat stress effects and management in wheat. A review. Agron Sustain Dev 37:37

    Article  Google Scholar 

  • Al Kharusi L, Dekoum VM, Assaha et al (2017) Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests 8:136

    Article  Google Scholar 

  • Al Mansoori TA et al (2007) Evaluation techniques for salt tolerance in date palm. Acta Hortic 736:301–306

    Article  Google Scholar 

  • Al-Enezi NA, Al-Bahrany AM, Al-Khayri JM (2012) Effect of x-irradiation on date palm seed germination and seedling growth. Emir J Food Agric 24(5):415–424

    Google Scholar 

  • Al-Khateeb AA (2006) Role of cytokinen and auxin on the multiplication stage of date palm (Phoenix dactylifera L.) cv. Sukry. Biotechnology 5:349–352

    Article  CAS  Google Scholar 

  • Al-Khayri JM (2007) Micropropagation of date palm Phoenix dactylifera L. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 509–526

    Chapter  Google Scholar 

  • Al-Khayri JM (2012) Determination of the date palm cell suspension growth curve, optimum plating efficiency, and influence of liquid medium on somatic embryogenesis. Emir J Food Agric 24(5):444–455

    Google Scholar 

  • Al-Khayri JM, Al-Bahrany AM (2004) Genotype-dependent in vitro response of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Sci Hortic 99(2):153–162

    Article  CAS  Google Scholar 

  • Al-Khayri JM, Ibraheem Y (2014) In vitro selection of abiotic stress tolerant date palm (Phoenix dactylifera L.). Emir J Food Agric 26(11):921–933

    Article  Google Scholar 

  • Al-Khayri JM, Naik PM, Jain SM, Johnson DV (2018) Advances in date palm (Phoenix dactylifera L.) breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: fruits, vol 3. Springer, Cham, pp 727–771

    Chapter  Google Scholar 

  • Al-Mulla L, Bhat NR, Khalil M (2013) Salt-tolerance of tissue-cultured date palm cultivars under controlled environment. Int J Food Vet Agric Eng 7:468–471

    Google Scholar 

  • Al-Rokibah AA, Abdalla MY, El-Fakharani YM (1998) Effect of water salinity on Thielaviopsis paradoxa and growth of date palm seedlings. J King Saud Univ Agric Sci 1:55–63

    Google Scholar 

  • Al-Salih AA, Al-Najjar NR, Al-Mashhadani AN (1987) A study on the chromosome number of two specific female date palm cultivars. Date Palm J 5:134–143

    Google Scholar 

  • Aly AA, Eliwa NE, Abd El-Megid MH (2019) Stimulating effect of gamma radiation on some active compounds in eggplant fruits. Egypt J Rad Sci Appl 32:61–73

    Google Scholar 

  • Amin R, Laskar RA, Khan S (2015) Assessment of genetic response and character association for yield and yield components in lentil (Lens culinaris L.) population developed through chemical mutagenesis. Cogent Agric 31(1):1000715

    Article  Google Scholar 

  • Amraoui H, Sedra MH, Hamdaoui A (2004) Etude des sécrétions protéiques et enzymatiques du Fusarium oxysporum f. sp albedinis: agent causal de la fusariose vasculaire du palmier dattier. Al Awamia 109(110):47–62

    Google Scholar 

  • Amraoui H, Lazrek HB, Sedra MH (2005) Chromatographic characterization and phytotoxic activity of Fusarium oxysporum f. sp. albedinis and saprophytic strain toxins. J Phytopathol 153:203–208

    Article  CAS  Google Scholar 

  • Ando A, Menten JOM, Tulmannn Neto A et al (1984) Obtençao de mutantes resistentes à fusariose en pimento-do-reino (Peper nigrum L.). In: Proceedings of the seminario regional sobre Tecnicas nucleares naproducao de plantasagricolaq, Piracicaba. CENA/USP, Sao Paulo, Brazil, pp 47–49

    Google Scholar 

  • Asnaghi C, D’Hont A, Glaszmannand JC, Rott P (2007) Resistance of sugarcane cultivar R 570 to Puccinia melanocephala isolates from different geographic locations. Plant Dis 85(3):282–286

    Article  Google Scholar 

  • Atak C, Alikamanoǧlu S, Açík L, Canbolat Y (2004) Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD. Mutat Res 556(1–2):34–44

    Google Scholar 

  • Attree SM, Moore D, Sawhney VK et al (1991) Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: effects of a non-plasmolysing water stress and abscisic acid. Ann Bot 68:519–552

    Article  Google Scholar 

  • Behnaz A, Zarghami R, Salari A (2018) The effects of agno3 and 2ip (n6-(2-isopentenyl) adenine) on different stages of somatic embryogenesis in date palm (Phoenix dactylifera L.) (Cv. medjool) Pakistan. J Bot 50:495–502

    Google Scholar 

  • Berestetskiyis AO (2008) A review of fungal phytotoxins: from basic studies to practical use. Appl Biochem Microbiol 44(5):453–465. https://doi.org/10.1134/S0003683808050013

    Article  CAS  Google Scholar 

  • Bhaskaran S, Smith RH (1992) Somatic embryogenesis in date palm (Phoenix dactylifera L.), Forestry Sciences Chapter book series, vol 44–46. FOSC

    Google Scholar 

  • Bouizgane B, Brault M, Pennarum AM (2004) Electrophysiological responses to fusaric acid of root hairs from seedlings of date palm susceptible and resistant to Fusarium oxysrporum f.sp albedinis. J Phytopathol 152:321–324

    Article  Google Scholar 

  • Bradshaw JE (2016) Mutation breeding plant breeding: past, present and future. Springer International Publishing, Switzerland. ISBN: 978-3-319-23284-3

    Book  Google Scholar 

  • Brar DS, Jain SM (1998) Somaclonal variation: mechanism and applications in crop improvement. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variationand induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 15–38

    Chapter  Google Scholar 

  • Bressan RA, Singh NK, Handa AK et al (1985) In: Plant genetics-UCLA symposium on molecular and cellular biology. In: Freeling M (ed) , vol 35. Liss, New York, pp 755–769

    Google Scholar 

  • Browne RA, Murphy JP, Cooke BM et al (2005) Evaluation of components of Fusarium head blight resistance in soft red winter wheat germplasm using detached leaf essay. Plant Dis 89:404–411

    Article  CAS  PubMed  Google Scholar 

  • Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d'explants foliaires: étude histologique. Can J Bot 70:735–741

    Article  Google Scholar 

  • Carlson PS (1973) Methionine sulfoximine-resistant mutants of tobacco. Science 180:1366

    Article  CAS  PubMed  Google Scholar 

  • Casinovi CG (1972) Chemistry of the terpenoid phytotoxins. In: Wood RKS, Ballio A, Graniti A (eds) Phytotoxins in plant diseases. Academic, New York, pp 105–125

    Google Scholar 

  • Chandra R, Kamle M, Bajpai A, Muthukumar M, Kalim S (2010) In vitro selection: a candidate approach for disease resistance breeding in fruit crops. Asian J Plant Sci 9(8):437–446

    Article  Google Scholar 

  • Chawla HS, Wenzel G (1987) Regeneration potential of callus from wheat and barley. Arch. Zuchtungforsch., Berlin 17(6):337–343

    Google Scholar 

  • Chwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot 62:43–52

    Article  Google Scholar 

  • Devreux M, Magnien E, Dalschaert X (1986) Cellules végétales in vitro et radiations ionisantes. In: Nuclear techniques and in vitro culture for plant improvement. Proceedings of a symposium, Vienna 1985. International Atonic Energy Agency (AIEA/FAO), Vienna, pp 93–100

    Google Scholar 

  • Doležel J, Greilhuber J, Suda J (1997) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244

    Article  Google Scholar 

  • Donini B, Mannino P, Ancora A, Sonnino A et al (1991) Mutation breeding programmes for the genetic improvement of vegetatively propagated plants Italy. In: Plant mutation breeding for crop improvement, Proceedings of a Symposium, vol l. IAEA and FAO, Vienna, pp 237–255

    Google Scholar 

  • El Fakhouri R, Lazrek HB, El Bahraoui E, Rochat H (1996) Preliminary investigation on a peptidic toxin produced by Fusarium oxysporum f.sp albedinis. Phytopathol Mediterr 35:11–15

    Google Scholar 

  • El Hadrami H, El Idrissi-Tourane A, El Hasni M et al (2005) Toxin-based in vitro selection and its potential application to date palm for resistance to the Bayoud Fusarium wilt. Plant Biol Pathol C R Biol 328:732–744

    Google Scholar 

  • El-Beltagi HS, Aly A, El-Desouky W (2019) Effect of gamma irradiation on some biochemical properties, antioxidant and antimicrobial activities of Sakouti and Bondoky dry dates fruits genotypes. J Rad Res Appl Sci 12:437–446

    Google Scholar 

  • El-Hadrami A, Daayf F, Elshibli S et al (2011) Somaclonal variation in date palm. In: Mohan S, Al-Khayri JM, Johnson DJ (eds) Date palm biotechnology. Springer, New York, pp 183–203

    Chapter  Google Scholar 

  • Erskine W, Moustafa AT, Osman AE et al (2003) Date palm in the GCC countries of the Arabian Peninsula. Euphytica 118:167–173

    Google Scholar 

  • FAO/IAEA-MVD (2021) Food and Agriculture Organization of the United Nations/International Atomic Energy Agency – mutant variety database. https://mvd.iaea.org/#!Search. Cited 30 Jan 2021

  • FAOSTAT (2018) Website of the Food and Agriculture Organization of the United Nations. Available online http://www.fao.org/faostat/en/data/QC. Accessed on 1 August 2018

  • Feldman AB, Leung H, Baraoidan M (2017) Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. Front Plant Sci 8:1–10

    Article  Google Scholar 

  • Foster PL (1991) In vivo mutagenesis. Methods Enzymol 204:114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawel NL, Jarret RL (1991) A modified CTAB DNA extraction procedure of Musa and Ipomoea. Plant Mol Biol Rep 9:262–266

    Article  CAS  Google Scholar 

  • Gawel NJ, Rao AP, Robacker CD (1986) Somatic embryogenesis from leaf and petiole callus cultures of Gossypium hirsutum L. Plant Cell Rep 5(6):457–459

    Article  CAS  PubMed  Google Scholar 

  • Gesteira AS, Otoni WC, Barros EG, Moreira MA (2008) RAPD-based detection of genomic instability in soybean plants derived from somatic embryogenesis. Plant Breed 121(3):269–271

    Article  Google Scholar 

  • Hallerman E, Grabau E (2016) Crop biotechnology: a pivotal moment for global acceptance. Food Energy Secur 5(1):3–17

    Article  Google Scholar 

  • Hashmi G, Hashmi S, Sen S et al (2017) Polymorphism in heat shock protein gene (hsp70) in entomopathogenic nematodes (rhabditida). J Therm Biol 22(2):143–149

    Article  Google Scholar 

  • Hazzouri KM, Flowers JM, Nelson D et al (2020) Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Front Plant Sci 11:293. https://doi.org/10.3389/fpls.2020.00293

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–161

    Article  CAS  Google Scholar 

  • Jain SM (2005) Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue Org Cult 82:113–123

    Article  CAS  Google Scholar 

  • Jain SM (2006) Radiation-induced mutations for develo** Bayoud disease resistant date palm in North Africa. In: Zaid A (ed) Proceedings of the international workshop on true-to-typeness of date palm tissue cultured-derived plants. Al Ain, UAE, Plant Tissue Culture Laboratory, UAE University, pp 31–41

    Google Scholar 

  • Jain SM (2010) Mutagenesis in crop improvement under the climate change. Rom Biotechnol Lett 15(2):88–106

    Google Scholar 

  • Jain SM (2011) Radiation induced mutations for date palm improvement. In: Mohan S, Al-Khayri JM, Johnson DJ (eds) Date palm biotechnology. Springer, New York, pp 271–286

    Chapter  Google Scholar 

  • Jain SM (2012) In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emir J Food Agric 24(5):386–399

    Google Scholar 

  • Jain SM (2014) In vitro culture and mutagenesis in genetic improvement of date palm (Phoenix dactylifera L.). In: Proceedings of the fourth symposium on date palm in Saudi Arabia, King Faisal University, Alahsa, 5–8 May 2007, pp 693–705

    Google Scholar 

  • Jain SM, Maluszynski M (2004) Induced mutations and biotechnology on improving crops. In: Mujib A, Cho M, Predieri S, Banerjee S (eds) In vitro applications in crop improvement: recent progress. IBH-Oxford, India, pp 169–202

    Google Scholar 

  • Jain SM, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Geneconserve 40:201–215

    Google Scholar 

  • Jain SM, Ahloowalia BS, Veilleux RE (1998) Somaclonal variation in crop plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 203–218

    Chapter  Google Scholar 

  • Jatt T, Markhand GS, Rayburn L et al (2019) Karyotype variations among date palm (Phoenix dactylifera L.) cultivars of Sindh, Pakistan. Sarhad J Agric 35(3):708–718

    Google Scholar 

  • Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Louvet JJ, Toutain G (1973) Recherches sur les fusarioses VIII. Nouvelles observations sur la fusariose du dattier et précisions concernant la lutte. Ann Phytopathol 5:35–52

    Google Scholar 

  • Ludwig AC, Hubstenberger J, Phillips F (1992) Screening of Allium tester lines in vitro with Pyrenochaeta terrestris filtrates. Hort Sci 27:166–168. https://doi.org/10.21273/HORTSCI.27.2.166

    Article  Google Scholar 

  • Maluszynski M, Szarejko I, Maluszynska J (2004) Mutation techniques. Encyclop Appl Plant Sci 1(3):186–201

    Google Scholar 

  • Mba C, Rownak A, Souleymane B, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture, essential methods. Wiley-Blackwell, Chichester, Sussex). ISBN: 978-0-470-68648-5, pp 111–130

    Chapter  Google Scholar 

  • Messiaen CM, Cassini R (1968) Recherches sur les fusarioses. IV. La systématique des Fusarium. Ann Epiphytes 19(3):387–454

    Google Scholar 

  • Miler N, Jedrzejczyk I, Jakubowski S, Winiecki J (2021) Ovaries of Chrysanthemum irradiated with high-energy photons and high-energy electrons can regenerate plants with novel traits. Agronomy 11(6):1111

    Article  CAS  Google Scholar 

  • Mohammadzai IU, Ziarat S, Ihsan I et al (2010) Effect of gamma irradiation, packaging and storage on the nutrients and shelf life of palm dates. J Food Process Preserv 34:622–638

    Article  Google Scholar 

  • Mokhlisse N (1987) Contribution à l’identification et à l’étude de la toxicité des différents constituants de la toxine sécrétée par le Fusarium oxysporum f. sp. albedinis. Thèse de 3ême cycle, Faculty des Sciences-Semlalia Marrakech Morocco

    Google Scholar 

  • Molot PM, Conus M, Cotta J, Ferrière H (1984) Mise en évidence d’une toxine dans les filtrats de culture de Rhizoctonia violaceae. Relation entre la sensibilité des plantules d’asperge à cette toxine et aux contaminations par mycélium. Rev Cytol Biol Végét Bot 7:205–217

    Google Scholar 

  • Muhammad I, Raheem S, Al-Harrasi A et al (2020) Silicon and gibberellins: synergistic function in harnessing ABA signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants (Basel) 9(5):620

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mussel HW (1972) Toxic proteins secreted by cotton isolates of Verticillium albo-atrum. In: Wood RKS, Ballio A, Graniti A (eds) Phytotoxins in plant diseases. Academic, New York, pp 443–445

    Google Scholar 

  • Naik PM, Al-Khayri JM (2016) Somatic embryogenesis of date palm (Phoenix dactylifera L.) through cell suspension culture. In: Jain SM (ed) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, Methods in molecular biology, 2nd edn. Humana, New York, pp 357–366

    Google Scholar 

  • Naik PM, Al-Khayri JM (2018) Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.). Ciênc e Agrotecnologia 42(5):464–473

    Article  CAS  Google Scholar 

  • Naik PM, Al-Khayri JM (2020) Influence of culture parameters on phenolics, flavonoids and antioxidant activity in cell culture extracts of date palm (Phoenix dactylifera L.). Erwerbs-Obstbau 62:181–188

    Article  Google Scholar 

  • Nikam AA, Devarumath RM, Ahuja A et al (2015) Radiation induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). Crop J 3:46–56

    Article  Google Scholar 

  • Osbourn AE (2001) Tox-boxes, fungal secondary metabolites, and plant disease. Proc Natl Acad Sci U S A 98(25):14187–14188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patade YV, Suprasanna P (2008) Radiation induced in vitro mutagenesis for sugarcane improvement. Sugar Tech 10:14–19

    Article  CAS  Google Scholar 

  • Penna S, Vitthal SB, Yadav PV (2012) In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremed Biodivers Bioavailab 6:6–14

    Google Scholar 

  • Pérez-Clemente RM, Gómez-Cadenas A (2012) In vitro tissue culture, a tool for the study and breeding of plants subjected to abiòtic stress conditions. In: Recent advances in plant in vitro culture, pp 91–108

    Google Scholar 

  • Pinon J (1984) Propriétés biologiques de la toxine d’hypoxylonmammatum parasite des peupliers de la section Leuce. Rev Cytol Biol Végét Bo 7:271–277

    Google Scholar 

  • Predieri S (2001) Mutation induction, tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64:185–210

    Article  CAS  Google Scholar 

  • Pringle RB, Scheffer RP (1963) Purification of the selective toxin of Periconia circinata. Phytopathology 53:785–787

    CAS  Google Scholar 

  • Quenzar B, Trifi M, Bouachrine B, Hartmann C et al (2001) A mitochondrial molecular marker of resistance to Bayoud disease in date palm. Theor Appl Genet 103(2–3):366–370

    Article  CAS  Google Scholar 

  • Raemakers CS, Schavemaker CM, Jacobsen E, Visser RG (1993) Improvements of cyclic somatic embryogenesis of cassava (Manihot esculenta Grantz). Plant Cell Rep 12:226–229

    Article  CAS  PubMed  Google Scholar 

  • Rashid U, Anwar F, Ansari TM et al (2009) Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. J Chem Technol Biotechnol 84:9

    Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis a potential approach for crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, New York, pp 149–187

    Chapter  Google Scholar 

  • Saaidi M, Toutain G, Bannerot H, Louvet J (1981) La sélection du palmier dattier (Phoenix dactylifera L) pour la résistance au Bayoud. Fruit 4(36):241–249

    Google Scholar 

  • Sabir JSM, Arasappan D, Bahieldin A et al (2014) Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars. PLoS One 9:e94158. https://doi.org/10.1371/journal.pone.0094158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saker MM, Adawy SS, Mohamed AA, EL-Itriby HA (2006) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plant 50(2):198–204

    Article  CAS  Google Scholar 

  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21(5):438–449

    Article  CAS  PubMed  Google Scholar 

  • Schwendiman J, Pannetier C, Michaux-Ferriere N (1988) Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis. Ann Bot 62:43–52

    Article  Google Scholar 

  • Sedra MH, Lazrek HB (2011) Fusarium oxysporum f. sp. albedinis toxin characterization and use for selection of resistant date palm to Bayoud disease. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Cham, pp 253–270

    Chapter  Google Scholar 

  • Sedra MH, El Fakhouri R, Lazrek HB (1993) Recherche d’une méthode able pour l’évaluation de l’effet des toxines secrétées par Fusarium oxysporum f. sp. albedinis sur le palmier dattier. Al Awamia 82:89–104

    Google Scholar 

  • Sedra MH, El Fakhouri R, Lotfi F, Lazrek HB (1997) Activités des toxines secrétées par Fusarium oxysporum f. sp. albedinis, agent causal du bayoud du palmier dattier et d’autres formes spéciales du Fusarium oxysporum. Al Awamia 98:57–65

    Google Scholar 

  • Sedra MH, Lazrek H, Lot F, Rochat H (1998) Fusarium oxysporum f. sp. albedinis toxin isolation and use for screening of date palm plants for resistance to the bayoud disesase. In: Proceedings of XXV International Horticultural Congress (IHC), 2–7 Aug 1998, Brussel, Belgium

    Google Scholar 

  • Sedra MH, Lazrek HB, Amraoui H, Nour S (2008) Pathogen toxins of Bayoud disease on date palm: in vitro selection and biological and specificity activities. J Plant Pathol 90(Suppl):53–57

    Google Scholar 

  • Sen A, AlikamanoÄŸlu S (2012) Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers. Mutat Res 738–739:38–44

    Article  PubMed  Google Scholar 

  • Sianipar N, Ariandana F, Maarisit W (2015) Detection of gamma-irradiated mutant of rodent tuber (Typhonium Flagelliforme Lodd.) in vitro culture by RAPD molecular marker. Procedia Chem 14:285–294

    Article  CAS  Google Scholar 

  • Song HS, Lim SM, Widholm JM (1994) Selection and regeneration of soybeans resistant to the pathotoxic culture filtrate of Septoria glycine. Phytopathology 84:948–951

    Article  Google Scholar 

  • Suprasanna P, Jain SM (2017) Mutant resources and mutagenomics in crop plants. Emir J Food Agric 29(9):651–657

    Article  Google Scholar 

  • Suprasanna P, Jain SM, Ochatt SJ et al (2012a) Applications of in vitro techniques in mutation breeding of vegetatively propagated crops. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI International, Wallingford, pp 371–385

    Chapter  Google Scholar 

  • Suprasanna P, Vitthal SB, Yadav PV (2012b) In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremed Biodivers Bioavail 6:6–14

    Google Scholar 

  • Suprasanna P, Mirajkar SJ, Bhagwat SG (2015) Induced mutations and crop improvement. In: Bahadur B, Rajam VM, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, Plant diversity, organization, function and improvement, vol I. Springer, India, pp 593–617

    Chapter  Google Scholar 

  • Surico G, Graniti A (1977) Produzione di tossine da Fusarium oxysporum Schl. f. sp. albedinis. Phytopathol Mediterr 16:30–33

    CAS  Google Scholar 

  • Tisserat B (1982) Factors involved in the production of plantlets from date palm callus cultures. Euphytica 31:201–214. https://doi.org/10.1007/BF00028323

    Article  Google Scholar 

  • Twizeyimana M, Ojiambo PS, Tenkouano A et al (2007) Rapid screening of Musa species for resistance to black leaf streak using in vitro plantlets in tubes and detached leaves. Plant Dis 9:308–314

    Article  Google Scholar 

  • Vargas-Segura C, López-Gamboa E, Araya-Valverde E et al (2019) Sensitivity of seeds to chemical mutagens, detection of dna polymorphisms and agro-metrical traits in M1 generation of coffee (Coffea arabica L.). J Crop Sci Biotechnol 22:451–464

    Article  Google Scholar 

  • Verdeil JL, Hocher V, Huet C et al (2001) Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot 88:9–18

    Article  Google Scholar 

  • Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A (2019) Mutagenesis in rice: the basis for breeding a new super plant. Front Plant Sci 10:1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani MR, Kozgar MI, Tomlekova N (2014) Mutation breeding: a novel technique for genetic improvement of pulse crops particularly Chickpea (Cicer arietinum L.). In: Parvaiz A, Wani MR, Azooz MM, Lam-son PT (eds) Improvement of crops in the era of climatic changes. Springer, New York, pp 217–248

    Chapter  Google Scholar 

  • Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Techol 47:189–194

    Article  CAS  Google Scholar 

  • **e GL, Mew TW (1998) A leaf inoculation method for detection of Xanthomonas oryzae Pv. Oryzicola from rice seed. Plant Dis 82:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Yatta D, khelafi H (2012) Mise en oeuvre des biotechnologies: cals embryogenes irrradiés, suspensions cellulaires en vue d'amélioration de palmier dattier à la résistance au bayoud. Célébration de la manifestation du 50eme anniversaire de l'indépendance Nationale organisée par la DGRSDT (la Recherche Scientifique et le Développement Technologique). 07 à 20 juillet, 2012 au Palais des expositions des Pins maritimes à Alger

    Google Scholar 

  • Yatta D, khelafi H, Abed (2004) Effect of gamma rays doses on the embryogenic calli of date palm (Phoenix dactylifera L.). Regional workshop organised by A.I.E.A / F.A.O sur «Cost effective up scale in vitro plant production and long – term storage of mutant plant material» Sfax (Tunisia) 29 November to 3 December 2004

    Google Scholar 

  • Yatta El Djouzi D, Abed F, Amara B et al (2014) The genomic DNA structure in somatic embryogenesis of date palm (Phoenix dactylifera L.) by flow cytometric, RAPD and AFLP analysis, vol 1. NOVA Publishers, New York, pp 241–252

    Google Scholar 

  • Yatta El Djouzi D, Al-hayri JM, Bouguedoura N (2020) Plant regeneration from cell suspension-derived protoplasts of three date palm cultivars. Propag Ornam Plants 20(1):28–38

    Google Scholar 

  • Yatta D, Abed F, Amara B et al (2013) Protoplast isolation from cellular suspension of two Algerian cultivars of date palm (Takerbucht and Teggaza). Acta Hortic 994:323–329

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Institute of Agricultural Research (INRA) and FAO/IAEA Coordinated Research Project (RAF/5/035, RAF/5/049, AlG/5/023, AlG/5/024). The technical officers of these projects (Dr. Shri Mohan Jain, Dr. Madeleine Spencer and Dr. Ljupcho Jankuloski) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel M. Al-Khayri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yatta El Djouzi, D., Khelafi, H., Jain, S.M., Al-Khayri, J.M. (2023). Mutation Breeding in Date Palm (Phoenix dactylifera L.). In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_25

Download citation

Publish with us

Policies and ethics

Navigation