Improvement of Fruit Crops Through Radiation-Induced Mutations Facing Climate Change

  • Chapter
  • First Online:
Mutation Breeding for Sustainable Food Production and Climate Resilience
  • 443 Accesses

Abstract

Genetic improvement of fruits for increasing production and productivity in the era of climate change requires the desirable genetic variation, which is lacking and hampers the breeding of fruit crops. Mutation breeding played a pivotal role in crop improvement of already established genetic backgrounds as well as generating desirable allelic variations for screening against improved horticultural traits and tolerance against abiotic and biotic stresses. According to the Mutant Variety Database (MVD) of fruit crops, mutants of fruit crops were registered with many useful traits affecting plant size, blooming time and fruit ripening, fruit color, self-compatibility, self-thinning, and resistance to pathogens. Radiosensitivity studies prior to starting of large-scale mutagenesis along with the application of in vitro technique significantly increase the mutagenic efficiency and effectiveness. Resultant pre-breeding stock from various radiation-induced mutagenesis programs in different fruit crops produced mutants having improved horticultural traits, and abiotic and biotic stress tolerance. Further, the advent of molecular techniques interplays a significant role in the characterization of genetic variation at early stages, to obtain desirable mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulhafiz F, Kayat F, Zakaria S (2018) Gamma irradiation effect on the growth of Musa cv. Tanduk (AAB). Asian J Agric Biol 6(2):135–142

    Google Scholar 

  • Aderdour T, Handaji N, Brhadda N, Gmira N, Aouad BAE, Mahmoudi K, Ennaciri H, Hmimidi A, Yacoubi R, Mohib M, Benyahia H (2019) Optimization of genetic variability induction by bud irradiation of the Fremont mandarin. Plant Cell Biotechnol Mol Biol 20:778–788

    Google Scholar 

  • Agisimanto D, Noor NM, Ibrahim R, Mohamad A (2016) Gamma irradiation effect on embryogenic callus growth of Citrus reticulata cv. Limau Madu. Sains Malaysiana 45(3):329–337

    CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations - a new paradigm in plant breeding. Euphytica 118:167–173

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Article  Google Scholar 

  • Al-Mousa RN, Hassan NA, Stino RG, Gomaa AH (2016) In vitro mutagenesis for increasing drought tolerance and molecular characterization in Grape (Vitis vinifera L.) cv. “Black Matrouh”. Syrian J Agric Res 3:259–275

    Google Scholar 

  • Altaf N (2007) A new ‘Kinnow’ strain with 0-4 seed per fruit. In: Proc international symposium on prospects of horticultural industry in Pakistan. Institute of Horticultural Science, University of Agriculture, Faisalabad, pp 135–138

    Google Scholar 

  • Alyanak N (2019) ‘Alphonse lavallée’ and ‘Isabella’ grape mutation using CO60 in variety creating opportunities. MSc thesis, Ordu University, Ordu, Turkey

    Google Scholar 

  • Anonymous (2021). https://mvd.iaea.org/

  • Arisah H, Mariana BD (2017) Fruit diversity of SoE mandarin mutant at M1V2 generation resulted from gamma irradiation. Bull Germplasm 23:69–80

    Google Scholar 

  • Atay AN, Atay E, Lauri P, Kunter B, Kantoglu KY (2018) Phenoty** gamma-ray-induced mutant population of ‘Amasya’ apple for architectural traits, precocity, floral phenology and fruit characteristics. Sci Hortic 233:195–203

    Article  Google Scholar 

  • Avenido RA, Galvez HF, Dimaculangan JG, Welgas JN, Frankie RB, Damasco OP (2009) Somatic embryogenesis and embryo culture coupled with gamma irradiation for generating avocado (Persea americana Miller) mutants in the Philippines. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 47–70

    Google Scholar 

  • Bapat VA, Ganapathi TR, Kulkarni VM, SunilKumar GB, Srinivas L, Suprasanna P (2007) Cellular and molecular approaches for the improvement of banana. In: Singh HP, Uma S (eds) Banana: technological advancements. Association for the Improvement in Production and Utilization of Banana, Natl. Research Center for Banana, Trichy, India, pp 160–176

    Google Scholar 

  • Bermejo A, Pardo J, Cano A (2011) Influence of gamma irradiation on seedless citrus production: pollen germination and fruit quality. Food Nutr Sci 2:169–180

    CAS  Google Scholar 

  • Bermejo A, Pardo J, Cano A (2012) Murcott seedless: influence of gamma irradiation on citrus production and fruit quality. Span J Agric Res 10:768–777

    Article  Google Scholar 

  • Bhagwat S, Duncan EJ (1998) Mutation breeding of banana cv. Highgate (Musa accuminata, AAA) for tolerance to Fusarium oxysporum f.sp. cubense using chemical mutagens. Sci Hortic 73:11–22

    Article  CAS  Google Scholar 

  • Bowen HJM (1962) Radiosensitivity in higher plants, and correlations with cell weight and DNA content. Radiat Bot 1:223–228

    Article  CAS  Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam, pp 345–355

    Google Scholar 

  • Campeanu G, Neaţa G, Darjanschi G, Stan R (2010) Tree and fruit characteristics of various apple genotypes obtained through mutagenesis. Not Bot Hort Agrobot Cluj 38:248–251

    Google Scholar 

  • Chan YK (2009) Radiation-induced mutation breeding of papaya. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 93–100

    Google Scholar 

  • Cimen B, Yesiloglu T, Incesu M, Yilmaz B, Tuzcu O (2019) Evaluation of Robinson mutant population derived by gamma irradiation. Egypt Univ Ziraat Fak Derg 56:375–381

    Google Scholar 

  • Coto O, Rodríguez NN, Fuentes JL, Alvarez A, Machado M, Santiago L, Zamora V, Ramos-Leal M (2014) Mutation-based breeding of avocado in Cuba: state of the art. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops, vol 2014. Wageningen Academic Publishers, pp 265–282

    Chapter  Google Scholar 

  • Damasco OP, Dizon TO, Estrella JB, Caymo LS, Guittap EJ, Dela C, Fs JR, Mendoza EMT (2007) Selection and characterization of gamma ray-induced bunchy top virus resistant mutants in banana cv Lakatan. Plant Mutat Rep 1(3):22–30

    Google Scholar 

  • Damasco OP, Cueva FMD, Descalsota JC, Tayobong RRP (2019) Gamma radiation and in vitro induced banana bunchy top virus (BBTV) resistant mutant lines of Banana cv ‘Lakatan’ (Musa sp., AA). Philippine J Sci 149:159–173

    Article  Google Scholar 

  • de Beer ZC, Severn-Ellis A, Husselman JH (2001) Preliminary assessment of Cavendish banana clones for resistance/tolerance to Fusarium wilt. In: Molina AB, Nik Masdek NH, Liew KW (eds) Banana fusarium wilt management: towards sustainable cultivation, pp 194–200

    Google Scholar 

  • Deng ZN, Gentile E, Nicolosi E, Domina F, Vardi A, Tribulato E (1995) Identification of in vitro and in vivo lemon mutants by RAPD markers. J Hortic Sci 70:117–125

    Article  CAS  Google Scholar 

  • Deng R, Fan J, Wang Y, Liu T, ** J (2021) Mutation induction of EMS and 60Co γ irradiation in vitro cultured seedlings of red pulp pitaya (Stenocereus) and ISSR analyzing of mutant. BMC Plant Biol. https://doi.org/10.21203/rs.3.rs-19273/v1

  • Dev R (2014) In vitro mutagenesis in grape and its validation using molecular markers. PhD dissertation, Division of Fruits and Horticultural Technology ICAR-Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Dev R, Singh SK, Singh R, Singh AK, Patel VB, Alizadeh M, Motha K, Kumar K (2021) Assessment of genetic diversity of grape mutants based on RAPD and SSR markers. Indian J Hortic 78(1):17–24

    Article  Google Scholar 

  • Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N (2002) RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Rep 21:166–173

    Article  CAS  Google Scholar 

  • Ekbic BH, Tangolar S, Ekbic E (2017) Mutation induction using 60Co in Pembe cekirdeksiz (Vitis vinifera L.) grape cultivar. Akad Ziraat Derg 6:101–106

    Article  Google Scholar 

  • El-Mageid IS, Al-Kfrawey AAM (2018) Effect of different doses of gamma radiation on avocado buds for produce of new genotypes. Middle East J Agric Res 7:977–985

    Google Scholar 

  • El-Oualkadi A, Mouhib M, Hajjaj B (2019a) Study of radio-sensitivity of strawberry runners cv. Fortuna under Moroccan conditions. Am J Plant Sci 10:1921–1931

    Article  CAS  Google Scholar 

  • El-Oualkadi A, Mouhib M, Taleb BA, Hajjaj B (2019b) Effect of different gamma radiation doses on the growing of the Achmrar local fig variety Ficus carica L. in Morocco. Int J Environ Agric Biotechnol 4:1648–1653

    Google Scholar 

  • El-Sabagh AS, Barakat MN, Genaidy EA (2011) Towards in vitro selection studies for salinity tolerance in Canino apricot cultivar. Effect of gamma irradiation on in vitro mutation and selection for salt-tolerance. Adv Hortic Sci 25(4):260–263

    Google Scholar 

  • El-Sayed E, Mahfouze S, Shaltout A, El-Dougdoug K, Sayed R (2011) Mutation breeding of Banana cv. ‘Grand-Nain’ for resistance to some banana viruses using biotechnology and physical mutagens. Afr J Plant Sci Biotechnol 5(1):35–40

    Google Scholar 

  • Ferreira EA, Pasqual M, Neto AT (2009) In vitro sensitivity of fig plantlets to gamma rays. Sci Agric (Piracicaba, Braz.) 66:540–542

    Article  Google Scholar 

  • Foster TM, Aranzana MJ (2018) The far-reaching contributions of bud sport mutants to horticulture and plant biology. Hortic Res 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Froneman LJ, Breedt UJ, Koelemoer PJJ, Van-Rensburg PJJ (1996) Producing seedless Citrus cultivars with gamma irradiation. Proc Int Soc Citricul 1:159–163

    Google Scholar 

  • Fuentes JL, Santiago L, Rodríguez NN, Arbelo OC, Alvarez A, Valdés Y, Vernhe M, Guerra M, Altanez S, Prieto EF, Velázquez B, Rodríguez JA, Sourd DG, Fuentes VR, Leal MR (2009) Combining zygotic embryo culture and mutation induction to improve salinity tolerance in avocado (Persea americana Mill). In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 71–82

    Google Scholar 

  • Ganapathi TR, Sidha M, Suprasanna P, Ujjappa KM, Bapat VA, D’Souza SF (2008) Field performance and RAPD analysis of gamma irradiated variants of Banana cultivar ‘Giant Cavendish’ (AAA). Int J Fruit Sci 8(3):147–159

    Article  Google Scholar 

  • Ganapathi TR, Ujjappa KM, Badigannavar A (2016) Characterization of gamma ray induced clones in ‘Giant Cavendish’ banana (AAA) for morphological and yield contributing traits. Int J Fruit Sci 16:310–322

    Article  Google Scholar 

  • Garcia LR, Perej PJ, Bermudez IC, Orellana PP, Veitia NR, Padron YM, Romero CQ (2002) Comparative study of variability produced by induced mutation and tissue culture in banana (Musa sp.) cv. ‘Grande Naine’. InfoMusa 11(2):4–6

    Google Scholar 

  • Goldenberg L, Yaniv Y, Porat R, Carmi N (2014) Effects of gamma-irradiation mutagenesis for induction of seedlessness, on the quality of mandarin fruit. Food Nutr Sci 5:943–952

    Google Scholar 

  • Görkem S, Yıldız AK, İlknur P, Aytül K, Ertuğrul T, Özhan S, Gül S (2020) Identification of genetic diversity among mutant lemon and mandarin varieties using different molecular markers. Turk J Agric Forest 44:1–14

    Google Scholar 

  • Gray LH, Reed J, Poynter M (1943) The effect of ionizing radiation on broad bean. Br J Radiol 16:125–128

    Article  Google Scholar 

  • Hautea DM, Molina GC, Balatero CH, Coronado NB, Perez EB, Alvarez MTH, Canama AO, Akuba RH, Quilloy RB, Frankie RB, Caspillo CS (2004) Analysis of induced mutants of Philippine with molecular markers. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology and induced mutations. Science Publishers, Inc., USA, pp 45–57

    Google Scholar 

  • Hayashi K (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl 1:34–38

    Article  CAS  PubMed  Google Scholar 

  • Hearn CJ (1984) Development of seedless orange and grapefruit cultivars through seed irradiation. J Am Soc Hortic Sci 109:270–273

    Article  Google Scholar 

  • Helaly MNM, Hanam El-Hosieny AMR (2011) Effectiveness of gamma irradiated protoplasts on improving salt tolerance of lemon (Citrus limon L. Burm. F.). Am J Plant Physiol 6(4):190–208

    Article  CAS  Google Scholar 

  • Hensz RA (1971) ‘Star Ruby’: a new deep red-fleshed grapefruit variety with distinct tree characteristics. J Rio Grande Valley Hortic Soc 25:54–58

    Google Scholar 

  • Huang J, Wen S, Zhang Y, Zhong Q, Yanga L, Chen L (2017) Abnormal megagametogenesis results in seedlessness of a polyembryonic ‘Meiguicheng’ orange (Citrus sinensis) mutant created with gamma-rays. Sci Hortic 217:73–83

    Article  Google Scholar 

  • Hwang SC, Ko WH (1990) Selection of improved Cavendish banana mutants resistant to race 4 Fusarium oxysporum f. sp. cubense. Acta Hortic 275:417–423

    Article  Google Scholar 

  • Jain SM (2000) Mechanisms of spontaneous and induced mutations in plants. In: Proc. 11th International Congress of Radiation Research. Dublin, Ireland 18–23, July 1999, pp 255–258

    Google Scholar 

  • Jain SM (2010) In vitro mutagenesis in banana (Musa spp.) improvement. Acta Hortic 879:605–614

    Article  Google Scholar 

  • Jain SM (2012) In vitro mutagenesis for improving date palm (Phoenix dactylifera L.). Emir J Food Agric 24(5):400–407

    Google Scholar 

  • Jain SM, Maluszynski M (2004) Induced mutations and biotechnology in improving crops. In: Mujib A, Cho MJ, Predieri S, Banerjee S (eds) In vitro application in crop improvement. Science Publishers, London, pp 170–202

    Google Scholar 

  • Jain SM, Swennen R (2004) Banana improvement: cellular, molecular and mutagenesis approaches. Science Publishers, New Hampshire

    Google Scholar 

  • Jamaluddin SH (1994) Mutation breeding of banana in Malaysia. In: Jones DR (ed) The improvement and testing of Musa: a global workshop. International Network for the Improvement of Banana and Plantain, Montpellier, pp 228–232

    Google Scholar 

  • Kafa G, Seday U, Uysal O, Polatoz S (2015) Effect of budwood irradiation on seed number of ‘Clementine’, ‘Nova’ and ‘Robinson’ mandarin mutants. Acta Hortic 1065:539–542

    Article  Google Scholar 

  • Karmarkar VM, Kulkarni VM, Suprasanna P, Bapat VA, Rao PS (2001) Radio-sensitivity of in vivo and in vitro cultures of banana cv. Basrai (AAA). Fruits 56:67–74

    Article  Google Scholar 

  • Kemal FA, Kayat F, Zakaria S (2018) Identification of morphological and molecular variation induced by gamma irradiation on musa cv. Pisang tanduk (AAB). J Biotechnol 15:265–271

    Google Scholar 

  • Kepenek K (2016) Effects of gamma ray irradiation and NaCl on induced somaclonal variation in Arnavutköy Strawberry cultivar. Acta Phys Polon 130:337–341

    Article  CAS  Google Scholar 

  • Khalil SA, Sattar A, Zamir R (2011) Development of sparse-seeded mutant Kinnow (Citrus reticulata Blanco) through budwood irradiation. Afr J Biotechnol 10:14562–14565

    Article  Google Scholar 

  • Khatri A, Bibi S, Dahot MU, Khan IA, Nizamani GS (2011) In vitro mutagenesis in banana and variant screening through ISSR. Pak J Bot 43(5):2427–2431

    CAS  Google Scholar 

  • Khawale RN, Singh SK, Vimala Y (2006) Gamma rays induced in vitro mutagenesis and molecular marker-assisted selection of mutants in grapevine. Acta Hortic 725:643–666

    Article  CAS  Google Scholar 

  • Kuksova VB, Piven NM, Gleba YY (1997) Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell Tissue Organ Cult 49:17–27

    Article  CAS  Google Scholar 

  • Kulkarni VM, Ganapathi TR, Suprasanna P, Bapat VA (2007) In vitro mutagenesis in banana (Musa spp.) using gamma irradiation. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, New York, pp 138–142

    Google Scholar 

  • Kumar AR, Kumar N, Poornima K, Soorianathasundaram K (2012) Screening of in vitro derived mutants of banana against nematodes. Afr J Biotechnol 11(88):15451–15456

    Article  Google Scholar 

  • Kumar M, Kumar M, Prakash S, Rao S, Prasad Y, Chand P, Singh MK (2017) Effect of seed treatment with gamma rays on fruit quality of papaya (Carica papaya L.). Res Environ Life Sci 10:182–184

    Google Scholar 

  • Kumar MK, Dinesh MR, Srivastav M, Singh SK, Singh AK (2018) Mutagenic sensitivity of scions and seed kernels of polyembryonic mango cultivars Peach and Bappakai to gamma irradiation. Int J Chem Stud 6:3335–3339

    Google Scholar 

  • Kunter B, Bas M, Kantoglu Y, Burak M (2012) Mutation breeding of sweet cherry (Prunus avium L.) var. 0900 Ziraat. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI Press, Wallingford, UK, pp 453–462

    Chapter  Google Scholar 

  • Latado RR, Neto AT, Figueira A (2012) In vivo and in vitro mutation breeding of citrus. Biorem Biodivers Bioavailab 6:40–45

    Google Scholar 

  • Liang H, Hu Y, Pang W, Liu W, Yang M (2011) Studies on kiwifruit improvement by multiple top grafting. Acta Hortic 913:365–372

    Article  CAS  Google Scholar 

  • Litz RE (2009) Recovery of mango plants with antrachnose resistance following mutation induction and selection in vitro with the culture filtrate of Colletotrichum gloesporoides Penz. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 7–16

    Google Scholar 

  • Liu YZ, **ong JJ, Deng XX (2007) Difference of a citrus late-ripening mutant (Citrus sinensis) from its parental line in sugar and acid metabolism at the fruit ripening stage. Sci China Ser C Life Sci 50:511–517

    Article  CAS  Google Scholar 

  • Lokko Y, Amoatey H (2001) Improvement of pineapple using in vitro and mutation breeding techniques. IAEA, Vienna, pp 25–29

    Google Scholar 

  • López-García A, Ibanez V, Muñoz JV, Herrero-Ortega A, Talón M (2012) Nero and Clemenverd, two new commercial varieties of clementine. Rural Life 352:18–21

    Google Scholar 

  • López-García A, Terol J, Tadeo FR, Herrero-Ortega A, Ibañez V, Talón M (2015) Three new cultivars of clementine: ‘Clemenverd’, ‘Nero’ and ‘Neufina’. Acta Hortic 1065:239–245

    Article  Google Scholar 

  • Maan SS, Brar JS (2021) Mutagenic sensitivity analysis in guava (Psidium guajava L.). Fruits 76(4):181–190

    Article  Google Scholar 

  • Majd F, Jahangirzadeh E, Vedadi S, Tafti MN, Rastegari J (2009) Mutation induction for improving of tangerine in Iran. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 41–46

    Google Scholar 

  • Mak C, Ho YW, Tan YP, Ibrahim R (1996) Novaria-a new banana mutant induced by gamma irradiation. InfoMusa 5:35–36

    Google Scholar 

  • Mallick M (2014) Characterization of Kinnow mandarin clones and mutants. MSc thesis, ICAR-Indian Agricultural Research Institute

    Google Scholar 

  • Mallick M, Bhardwaj C, Srivastav M, Sharma N, Awasthi OP (2017) Molecular characterization of Kinnow mandarin clones and mutants using cross genera SSR markers. Indian J Biotechnol 16:244–249

    CAS  Google Scholar 

  • Mariana BD, Arisah H, Selvawajayanti YM (2018) Seedless fruit pummelo induced by Gamma Ray irradiation: fruit morphological characters and stability evaluation. Biodiversitas 19:706–711

    Article  Google Scholar 

  • Martin KP, Pachathundikandi SK, Zhang CL, Slater A, Madassery J (2006) RAPD analysis of a variant of banana (Musa sp.) cv. Grande Naine and its propagation via shoot tip culture. In Vitro Cell Dev Biol Plant 42(2):188–192

    Article  CAS  Google Scholar 

  • Mba C, Afza R, Bado S, Jain SM (2010) Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, Chichester, pp 111–130

    Chapter  Google Scholar 

  • Mba C, Afza R, Shu QY (2012) Mutagenic radiations: X-rays, ionizing particles and ultraviolet. In: Shu Q, Nakagawa H, Forster B (eds) Plant mutation breeding and biotechnology. CABI Press, Wallingford, UK, pp 83–90

    Chapter  Google Scholar 

  • McCollum TG, Bowman KD (2005) Fruit and juice quality of seedless Pineapple oranges on four rootstocks. Proc Fla State Hortic Soc 118:1–3

    Google Scholar 

  • Miri SM, Mousavi A, Naghavi MR, Khiabani BN (2014) Molecular analysis of Musa mutants resistant to salinity by microsatellite markers. Trakia J Sci 2:114–120

    Google Scholar 

  • Miri SM, Rahimi M, Naserian Khiabani B, Vedadi C (2019) Response of gamma-irradiated banana plants to in vitro and ex vitro salinity stress. Crop Breed J 9(1 & 2):33–44

    Google Scholar 

  • Mishra PJ, Ganapathi TR, Suprasanna P, Bapat VA (2007) Effect of single and recurrent gamma irradiation on in vitro shoot cultures of banana. Int J Fruit Sci 7:47–57

    Article  Google Scholar 

  • Montañola MJ, Galaz A, Gambardella M, Mártiz J (2015) New low seeded Mandarin (Citrus reticulata) and Lemon (C. limon) selections obtained by gamma irradiation. Acta Hortic 1065:543–548

    Article  Google Scholar 

  • Motha K (2016) In vitro mutagenesis of grape rootstock genotypes and isolation of NaCl tolerant mutants. PhD thesis, ICAR-Indian Agricultural Research Institute

    Google Scholar 

  • Motha K, Singh SK, Singh AK, Singh R, Srivastav M, Verma MK, Bhardwaj C (2018) Molecular characterization and genetic relationships of some stress tolerant grape rootstock genotypes as revealed by ISSR and SSR markers. Plant Tissue Cult Biotechnol 28(1):77–90

    Article  Google Scholar 

  • Munir N, Safdar I, Naz S (2015) Effect of induced mutation for varietal improvement in some local grapevine cultivars. J Anim Plant Sci 25(1):234–242

    CAS  Google Scholar 

  • Murti RH, Kim HY, Yeoung YR (2013) Effectiveness of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of strawberry. Afr J Biotechnol 12(30):4803–4812

    Article  Google Scholar 

  • Nandariyah, Hartati S, Khasanah U (2019) Gamma irradiation on generative growth of Raja Bulu banana (Musa paradisiaca L.). In: MV1. Proc 4th International conference on climate change, Yogyakarta, Indonesia

    Google Scholar 

  • Naval MM, Zuriaga E, Badenes ML (2013) AFLP analysis of mutations induced by gamma irradiation in ‘Rojo Brillante’ Persimmon. Acta Hortic 996:117–122

    Article  Google Scholar 

  • Neto AT, Latado RR, Tsai SM, Derbyshire MT, Yemma AF, Filho JAS, Ceravolo L, Rossi AC, Namekata T, Pompeu JP, Figueiredo JO, Pio R, Domingues ET, Santos PC, Boliani A (1998) Mutation breeding in vivo and in vitro in vegetatively propagated crops. Induced mutations in connection with biotechnology for crop improvement in Latin America. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Lima, Peru, pp 55–62

    Google Scholar 

  • Neto AT, Ando A, Figueira A, Latado RR, Santos PC, Correa LS, Peres LEP, Hauagge R, Pulcinelli CE, Ishiy T, Filho AWPF, Camargo CEO (2011) Genetic improvement of crops by mutation techniques in Brazil. In: Plant mutation reports. International Atomic Energy Agency and Food and Agriculture Organization of the United Nations, Vienna, pp 24–37

    Google Scholar 

  • Nhat HNT, Chau NM (2010) Radiation induced mutation for improving papaya variety in Vietnam. Acta Hortic 851:77–80

    Article  Google Scholar 

  • Orita M, Suziki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Osei-Kofi F, Amoatey HM, Lokko Y (1997) Improvement of pineapple (Ananas comosus (L.) Merr.) using biotechnology and mutation breeding techniques. In: Conference: In vitro techniques for selection of radiation-induced mutants adapted to adverse environmental conditions 15–19 April 1996, Cairo, Egypt

    Google Scholar 

  • Pathirana R, Deroles S, Hoeata K, Montefiori M, Tyson J, Wang T, Datson PM, Hellens RP (2016) Fast-tracking kiwifruit breeding through mutagenesis. Acta Hortic 1127:217–222

    Article  Google Scholar 

  • Patil SG, Patil VP (2005) Mutation studies in Anab-e-Shahi grape (Vitis vinifera L.). Indian J Hortic 62(3):223–226

    Google Scholar 

  • Pérez-Jiménez M, Tallón CI, Pérez-Tornero O (2020) Inducing mutations in Citrus spp.: sensitivity of different sources of plant material to gamma radiation. Appl Radiat Isotopes 157:1–7

    Article  Google Scholar 

  • Pestana RKN, Amorim EP, Ferreira CF, Amorim VBO, Oliveira LS, Ledo CAS, Silva SO (2011) Genetic dissimilarity of putative gamma-ray-induced ‘Preciosa - AAAB-Pome type’ banana (Musa sp) mutants based on multivariate statistical analysis. Genet Mol Res 10:3976–3986

    Article  CAS  PubMed  Google Scholar 

  • Polat I, Turgutoglu E, Kurt S (2015) Determination of genomic diversity within mutant lemon (Citrus limon L.) and Mandatin (Citrus reticulata) using molecular markers. Pak J Bot 47(3):1095–1102

    CAS  Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64:185–210

    Article  CAS  Google Scholar 

  • Predieri S (2002) The importance of induced mutations in pear improvement. Acta Hortic 596:161–166

    Article  Google Scholar 

  • Predieri S, Zimmerman RH (2001) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for productivity and fruit traits. Euphytica 117:217–227

    Article  Google Scholar 

  • Predieri S, Magli M, Zimmerman RH (1997) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for vegetative form traits. Euphytica 93:227–237

    Article  Google Scholar 

  • Pujar DU, Vasugi C, Vageeshbabu HS, Honnabyraiah MK, Adiga D, Jayappa J, Kanupriya (2019) Evaluation of mutant progenies for improved morphological, fruit and yield traits. J Pharmacogn Phytochem 8:2324–2334

    Google Scholar 

  • Qamar M, Qureshi ST, Khan IA, Memon SA, Bano Z, Solangi SK (2016) Influence of gamma radiation on the physiochemical properties of in vitro triploid and tetraploid banana species. Pak J Biotechnol 13(4):237–244

    Google Scholar 

  • Rattanpal HS, Sidhu GS (2015) Development of low seeded Kinnow through mutation breeding. Agric Res J 52:198–199

    Article  Google Scholar 

  • Reig C, Agustí M (2007) ‘Piera’: a new everflowering loquat variety. Acta Hortic 750:165–168

    Article  Google Scholar 

  • Reis RV, Amorim EP, Ledo CAS, Pestana RKN, Gonçalves ZS, Borém A (2015) Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation. Genet Mol Res 14(2):4687–4695

    Article  CAS  PubMed  Google Scholar 

  • Rocha AJ, Soares JMS, Nascimento FS, Santos AS, Amorim VBO, Ferreira CF, Haddad F, Santos-Serejo JA, Amorim EP (2021) Improvements in the resistance of the Banana species to Fusarium wilt: a systematic review of methods and perspectives. J Fungi 7:249. https://doi.org/10.3390/jof7040249

    Article  CAS  Google Scholar 

  • Roose ML, Williams TE (2007) Mandarin tree named ‘Tango’. US Plant Patent 17863

    Google Scholar 

  • Sahu P, Dash DK, Lenka J, Dash SN, Tripathy SK (2019) A gamma radiosensitivity study on papaya cv. Ranchi local & Arka Surya. Int J Chem Stud 7:146–153

    CAS  Google Scholar 

  • Sales EK, Espino RRC (2008) Mutation induction in Philippine bananas cv. ‘Lakatan’ through gamma ray irradiation. In: FAO/IAEA international symposium on induced mutations in plants, 12–15 Aug 2008, Vienna, Austria, p 123

    Google Scholar 

  • Sattar MN, Iqbal Z, Al-Khayri JM, Jain SM (2021) Induced genetic variations in fruit trees using new breeding tools: food security and climate resilience. Plants 10:1–36

    Article  Google Scholar 

  • Selvi BS, Ponnuswami V, Kumar N (2007) Radiosensitivity of amla (Emblica officinalis Gaertn.) varieties treated with gamma rays. J Hortic Sci 2:108–111

    Google Scholar 

  • Sharma V, Thakur M (2021) Applicability of SCoT markers for detection of variations in Fusarium yellows resistant lines of ginger (Zingiber officinale Rosc.) induced through gamma irradiations. S Afr J Bot 140:454–460. https://doi.org/10.1016/j.sajb.2021.01.021

    Article  CAS  Google Scholar 

  • Sharma V, Thakur M, Tomar M (2020) In vitro selection of gamma irradiated shoots of ginger (Zingiber officinale Rosc.) against Fusarium oxysporum f.sp. zingiberi and molecular analysis of the resistant plants. Plant Cell Tissue Org Cult 143:319–330. https://doi.org/10.1007/s11240-020-01919-x

    Article  CAS  Google Scholar 

  • Singh S (2016) Induction and molecular characterization of guava variants generated through mutation breeding. MSc thesis, Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Singh S, Gill MIS, Arora NK (2018) Induction of variants in guava (Psidium guajava L.) through irradiation of budsticks by gamma rays. Agric Res J 55:347–350

    Article  Google Scholar 

  • Singh S, Gill MIS, Arora NK, Sohi HS (2021) Determination of gamma rays induced mutagenic sensitivity of guava cv. ‘Lalit’ and ‘Shweta’ (Psidium guajava L.). Agric Res J 58:478–481

    Google Scholar 

  • Smith MK, Hamill SD, Langdon PW, Giles JE, Doogan VJ, Pegg KG (2006) Towards the development of a Cavendish banana resistant to race 4 of fusarium wilt: gamma irradiation of micropropagated Dwarf parfitt (Musa spp., AAA group, Cavendish subgroup). Austral J Exp Agric 46:107–113

    Article  Google Scholar 

  • Somsri S, Putivoranat M, Kanhom P, Thayamanont P, Meecharoen S, Jompook P (2008) Improvement of tropical and subtropical fruit trees: Tangerine, pummelo in Thailand through induced mutation and biotechnology. Acta Hortic 787:127–140

    Article  Google Scholar 

  • Spiegel-Roy P (1990) Economic and agricultural impact of mutation breeding in fruit trees. Mut Breed Rev Vienna 5:215–235

    Google Scholar 

  • Spiegel-Roy P, Padova R (1973) Radiosensitivity of shamouti orange (Citrus sinensis) seeds and buds. Radiat Bot 13:105–110

    Article  Google Scholar 

  • Spiegel-Roy P, Vardi A (1990) Induced mutations in Citrus. Mutat Breed News 35:26–27

    Google Scholar 

  • Stover EW, McCollum TG, Niedz RP, Bowman KD (2008) Citrus scion breeding at the USDA/ARS U.S. Horticultural Research Laboratory. In: Proc International Society of Citriculture. 11th International Citrus Congress, Vol. I, October 26–30, Wuhan, China, pp 50–54

    Google Scholar 

  • Sunnucks P, Wilson ACC, Beheregaray LB, Zenger K, French J, Taylor AC (2000) SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710

    Article  CAS  PubMed  Google Scholar 

  • Surakshitha NC, Soorianathasundaram K, Ganesan NM (2017) Determination of mutagenic sensitivity of hardwood cuttings of grapes ‘Red Globe’ and ‘Muscat’ (Vitis vinifera L.) to gamma rays. Sci Hortic 226:152–156

    Article  CAS  Google Scholar 

  • Sutarto I, Agisimanto D, Supriyanto A (2009) Development of promising seedless citrus mutants through gamma irradiation. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 306–308

    Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Tang CY, Huang SC, Liu CC (2000) Mutation breeding in bananas: an overview. Chin Soc Hortic Sci 46:251–258

    Google Scholar 

  • Vardi A, Spiegel-Roy P (1988) A new approach to selection for seedlessness. In: Proc. 6th Citrus Congress International Society of Citriculture, Tel Aviv, Israel, pp 131–134

    Google Scholar 

  • Vardi A, Elhanati A, Frydman-Shani A, Neumann H, Spiegel-Roy P (1995) New considerations on the choice of irradiation dose rate in Citrus. In: Induce mutation and molecular techniques for crop improvement. International Atomic Energy Agency and Food and Agriculture Organization of the United Nations, Vienna, pp 667–670

    Google Scholar 

  • Vardi A, Spiegel-Roy P, Frydman-Shani A, Elchanati A, Neumann H (2003) Citrus tree named ‘Orri’. US Plant Patent 13616

    Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hortic Sci 133(1):117–126

    Article  Google Scholar 

  • Venkatachalam L, Venkataramareddy SR, Neelwarne B (2007) Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers. Electron J Biotechnol 10:1–12

    Google Scholar 

  • Vos JE, Preez RJD, Froneman I, Hannweg K, Husselman J, Rheeder S (2009) Mutation breeding in South Africa 2003–2004. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 113–122

    Google Scholar 

  • Walker AR, Lee E, Robinson SP (2006) Two new grape cultivars, bud sports of Cabernet Sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Mol Biol 62:623–635

    Article  CAS  PubMed  Google Scholar 

  • Weimin W, Mizhen Z, Zhuangei W, Yaming Q, Ji Y (2009) The study of the irradiation effect on runner plant of strawberry with 60Co-Gamma Ray. In: Lopes-Medina J (ed) Proc. VI. internat. strawberry symposium, Strawberry. Acta Hortic, vol 842, pp 597–600

    Google Scholar 

  • Wu L, Li M, Yang X, Yang T, Wang J (2011) ISSR analysis of Chlorophytum treated by three kinds of chemical mutagen. J Northeast Agric Univ 18:21–25

    Google Scholar 

  • **ao JP, Chen LG, **e M, Liu HL, Ye WQ (2009) Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci Hortic 121(4):505–510

    Article  CAS  Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Schmidt H (1994) Selection of mutants from adventitious shoots formed in X-ray treated cherry leaves and differentiation of standard and mutant with RAPDs. Euphytica 77:89–92

    Article  Google Scholar 

  • Zamir R, Ali N, Shah ST, Mohammad T, Ahmad J (2009) Guava (Psidium guajava L) improvement using in vivo and in vitro induced mutagenesis. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 101–112

    Google Scholar 

  • Zanol GC, Cunha J, Brazão JS, Fevereiro PS, Eiras-Dias JE (2011) Identification of a new white-berried grapevine cultivar as a result from bud sport of the portuguese blue black cultivar ‘AlfrocheiroPreto’. Acta Hortic 918:673–678

    Article  Google Scholar 

  • Zayan MA, El-Shereif AR, Gaser ASA, Salama AM (2020) Genetic diversity and relationships among grapevine rootstock mutants through RAPD technique. J Product Dev 25(1):79–99

    Article  Google Scholar 

  • Zhao Y, Zhaob X, Zhao S, Hanb N (2015) A novel bud sport from the ‘Benitaka’ table grape cultivar (Vitis vinifera L.) improves sugar and anthocyanin accumulation at the berry ripening stage. S Afr J Bot 97:111–116

    Article  CAS  Google Scholar 

  • Zheng HR, Liu HC, Ye ZW, Su MS, ** YF (2009) Induction of mutation in Jujube (Zizyphus jujuba Mill) using tissue culture combined with 60Co gamma rays irradiation. In: Sangwan R (ed) Induced mutation in tropical fruit trees. IAEA, Vienna, Austria, pp 113–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Maan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maan, S.S., Sharma, V., Brar, J.S. (2023). Improvement of Fruit Crops Through Radiation-Induced Mutations Facing Climate Change. In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_23

Download citation

Publish with us

Policies and ethics

Navigation