Preliminaries of Robustness Optimization

  • Chapter
  • First Online:
Robustness Optimization for IoT Topology

Abstract

In this chapter, we first introduce nine metrics measuring network topology robustness, and then present several advanced topology optimization algorithms based on small world and scale-free network models. Before optimizing network topology, we should know the definition of robustness and what is important for network topology. Nevertheless, robustness optimization algorithms are essential for IoT applications to provide robust communication supports. This chapter outlines the preliminaries of related works about the robustness optimization for IoT applications, which is better for readers to easily understand the content of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, D., Boesch, F., Suffel, C., & Tindell, R (1981). Connectivity extremal problems and the design of reliable probabilistic networks. In The Theory and Application of Graphs (pp. 89–98).

    Google Scholar 

  2. Harary, F. (1983). Conditional connectivity. Networks, 13(3), 347–357.

    Article  MathSciNet  MATH  Google Scholar 

  3. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298–305.

    Article  MathSciNet  MATH  Google Scholar 

  4. Jamakovic, A., & Uhlig, S. (2007). Influence of the network structure on robustness. In 2007 15th IEEE International Conference on Networks (pp. 278–283). New York: IEEE.

    Chapter  Google Scholar 

  5. Wu, J., Barahona, M., Tan, Y.-J., & Deng, H.-Z. (2011). Spectral measure of structural robustness in complex networks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6):1244–1252.

    Article  Google Scholar 

  6. Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S., & Herrmann, H. J. (2011). Mitigation of malicious attacks on networks. Proceedings of the National Academy of Sciences, 108(10):3838–3841.

    Article  Google Scholar 

  7. Li, R., Yu, J. X., Huang, X., Cheng, H., & Shang, Z. (2014). Measuring the impact of mvc attack in large complex networks. Information Sciences, 278, 685–702.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mishkovski, I., Biey, M., & Kocarev, L. (2011). Vulnerability of complex networks. Communications in Nonlinear Science and Numerical Simulation, 16(1):341–349.

    Article  MathSciNet  MATH  Google Scholar 

  9. Tizghadam, A., & Leongarcia, A. (2010). Autonomic traffic engineering for network robustness. IEEE Journal on Selected Areas in Communications, 28(1):39–50.

    Article  Google Scholar 

  10. Scellato, S., Leontiadis, I., Mascolo, C., Basu, P., & Zafer, M. (2013). Evaluating temporal robustness of mobile networks. IEEE Transactions on Mobile Computing, 12(1), 105–117.

    Article  Google Scholar 

  11. Koç, Y., Warnier, M., Kooij, R. E., & Brazier, F. M. T. (2013). An entropy-based metric to quantify the robustness of power grids against cascading failures. Safety Science, 59:126–134.

    Article  Google Scholar 

  12. Koc, Y., Warnier, M., Van Mieghem, P., Kooij, R. E., & Brazier, F. M. T. (2014). The impact of the topology on cascading failures in a power grid model. Physica A: Statistical Mechanics and Its Applications, 402:169–179.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cuadra, L., Salcedo-Sanz, S., Del Ser, J., Jiménez-Fernández, S., & Geem, Z. (2015). A critical review of robustness in power grids using complex networks concepts. Energies, 8(9), 9211–9265.

    Article  Google Scholar 

  14. Albert, R., Jeong, H., & Barabasi, A.. Error and attack tolerance of complex networks. Nature, 406(6794):378–382.

    Google Scholar 

  15. Callaway, D. S., Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85(25):5468–5471.

    Article  Google Scholar 

  16. Cohen, R., Erez, K., Benavraham, D., & Havlin, S. (2001). Breakdown of the internet under intentional attack. Physical Review Letters, 86(16):3682–3685.

    Article  Google Scholar 

  17. Cohen, R., Erez, K., ben Avraham, D., & Havlin, S. (2000). Resilience of the internet to random breakdowns. Physical Review Letters, 85:4626–4628.

    Google Scholar 

  18. Wu, J., Deng, H., Tan, Y., & Zhu, D. (2007). Vulnerability of complex networks under intentional attack with incomplete information. Journal of Physics A, 40(11):2665–2671.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zeng, A., & Liu, W. (2012). Enhancing network robustness against malicious attacks. Physical Review E, 85(6):066130.

    Article  MathSciNet  Google Scholar 

  20. Kasthurirathna, D., Piraveenan, M., & Thedchanamoorthy, G. (2013). On the influence of topological characteristics on robustness of complex networks. Journal of Artificial Intelligence and Soft Computing Research, 3(2):89–100.

    Article  Google Scholar 

  21. Qiu, T., Liu, J., Si, W., Han, M., Ning, H., & Atiquzzaman, M. (2017). A data-driven robustness algorithm for the internet of things in smart cities. IEEE Communications Magazine, 55(12), 18–23.

    Article  Google Scholar 

  22. Louzada, V. H. P., Daolio, F., Herrmann, H. J., & Tomassini, M. (2013). Smart rewiring for network robustness. Journal of Complex networks, 1(2):150–159.

    Article  Google Scholar 

  23. Zhou, M., & Liu, J. (2016). A two-phase multiobjective evolutionary algorithm for enhancing the robustness of scale-free networks against multiple malicious attacks. IEEE Transactions on Cybernetics, 47(2):539–552.

    Google Scholar 

  24. Cohen, R., & Havlin, S. (2010). Complex networks: Structure, robustness and function. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  25. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-worldnetworks. Nature, 393(6684):440–442.

    Article  MATH  Google Scholar 

  26. Helmy, A. (2003). Small worlds in wireless networks. IEEE Communications Letters, 7(10):490–492.

    Article  Google Scholar 

  27. Dixit, S., Yanmaz, E., & Tonguz, O. K. (2005). On the design of self-organized cellular wireless networks. IEEE Communications Magazine, 43(7):86–93.

    Article  Google Scholar 

  28. Brust, M. R., Ribeiro, C. H. C., Turgut, D., & Rothkugel, S. (2010). Lswtc: A local small-world topology control algorithm for backbone-assisted mobile ad hoc networks. In IEEE Local Computer Network Conference (pp. 144–151).

    Google Scholar 

  29. Tan, M., Yang, T., Chen, X., Yang, G., Zhu, G., Holme, P., & Zhao, J. (2018). A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology. Physica A: Statistical Mechanics and its Applications, 494:129–139.

    Article  Google Scholar 

  30. Hawick, K. A., & James, H. A. (2010). Small-world effects in wireless agent sensor networks. International Journal of Wireless and Mobile Computing, 4(3):155–164.

    Article  Google Scholar 

  31. Guidoni, D. L., Mini, R. A. F., & Loureiro, A. A. F. (2010). On the design of resilient heterogeneous wireless sensor networks based on small world concepts. Computer Networks, 54(8):1266–1281.

    Article  MATH  Google Scholar 

  32. Guidoni, D. L., Mini, R. A. F., & Loureiro, A. A. F. (2012). Applying the small world concepts in the design of heterogeneous wireless sensor networks. IEEE Communications Letters, 16(7):953–955.

    Article  Google Scholar 

  33. Liu, L., Qi, X., Xue, J., & **e, M. (2014). A topology construct and control model with small-world and scale-free concepts for heterogeneous sensor networks. International Journal of Distributed Sensor Networks, 10(3):374251.

    Article  Google Scholar 

  34. Huang, R., Chu, X., Zhang, J., & Hu, Y. H. (2017). Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system. International Journal of Distributed Sensor Networks, 13(6):1550147717713626.

    Article  Google Scholar 

  35. Toyonaga, S., Kominami, D., & Murata, M. (2015). Brain-inspired method for constructing a robust virtual wireless sensor network. In 2015 International Conference on Computing and Network Communications (CoCoNet) (pp. 59–65). New York: IEEE.

    Chapter  Google Scholar 

  36. Luo, D., Qiu, T., Deonauth, N., & Zhao, A. (2015). A small world model for improving robustness of heterogeneous networks. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 849–852). New York: IEEE.

    Chapter  Google Scholar 

  37. Qiu, T., Luo, D., **a, F., Deonauth, N., Si, W., & Tolba, A. (2016). A greedy model with small world for improving the robustness of heterogeneous internet of things. Computer Networks, 101:127–143.

    Article  Google Scholar 

  38. Huang, W.-Q., Zhuang, X.-T., & Yao, S. (2009). A network analysis of the chinese stock market. Physica A: Statistical Mechanics and its Applications, 388(14):2956–2964.

    Article  Google Scholar 

  39. Li, X., Wang, Q., & Jia, S. (2017). Analysis of topological properties of complex network of chinese stock based on copula tail correlation. In 2017 International Conference on Service Systems and Service Management (pp. 1–6). New York: IEEE.

    Google Scholar 

  40. Zhang, W., & Zhuang, X. (2019). The stability of Chinese stock network and its mechanism. Physica A: Statistical Mechanics and its Applications, 515:748–761.

    Article  Google Scholar 

  41. **, Y., Zhang, Q., & Li, S.-P. (2016). Topological properties and community detection of venture capital network: Evidence from China. Physica A: Statistical Mechanics and Its Applications, 442:300–311.

    Article  Google Scholar 

  42. Pagani, G. A., & Aiello, M. (2013). The power grid as a complex network: A survey. Physica A: Statistical Mechanics and its Applications, 392(11):2688–2700.

    Article  MathSciNet  MATH  Google Scholar 

  43. Ding, M., & Han, P. (2006). Reliability assessment to large-scale power grid based on small-world topological model. In 2006 International Conference on Power System Technology (pp. 1–5). New York: IEEE.

    Google Scholar 

  44. Guo, W., Wang, H., & Wu, Z. (2018). Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures. Physica A: Statistical Mechanics and Its Applications, 494:186–199.

    Article  MathSciNet  Google Scholar 

  45. Pepyne, D. L. (2007). Topology and cascading line outages in power grids. Journal of Systems Science and Systems Engineering, 16(2):202–221.

    Article  Google Scholar 

  46. Wang, J.-W., & Rong, L.-L. (2011). Robustness of the western united states power grid under edge attack strategies due to cascading failures. Safety Science, 49(6):807–812.

    Article  Google Scholar 

  47. Wang, X., Koç, Y., Kooij, R. E., & Van Mieghem, P. (2015). A network approach for power grid robustness against cascading failures. In 2015 7th International Workshop on Reliable Networks Design and Modeling (RNDM) (pp. 208–214). New York: IEEE.

    Chapter  Google Scholar 

  48. Colak, I., Sagiroglu, S., Fulli, G., Yesilbudak, M., & Covrig, C.-F. (2016). A survey on the critical issues in smart grid technologies. Renewable and Sustainable Energy Reviews, 54:396–405.

    Article  Google Scholar 

  49. Cuadra, L., Pino, M., Nieto-Borge, J., & Salcedo-Sanz, S. (2017). Optimizing the structure of distribution smart grids with renewable generation against abnormal conditions: A complex networks approach with evolutionary algorithms. Energies, 10(8):1097.

    Article  Google Scholar 

  50. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291):1025.

    Article  Google Scholar 

  51. Chai, W. K., Kyritsis, V., Katsaros, K. V., & Pavlou, G. (2016). Resilience of interdependent communication and power distribution networks against cascading failures. In 2016 IFIP Networking Conference (IFIP Networking) and Workshops (pp. 37–45). New York: IEEE.

    Chapter  Google Scholar 

  52. Kang, W., Zhu, P., & Hu, G. (2018). Cascading failure based on load redistribution of a smart grid with different coupling modes. In International Conference on Computational Science (pp. 328–340). New York: Springer.

    Google Scholar 

  53. Derrible, S., & Kennedy, C. (2010). The complexity and robustness of metro networks. Physica A: Statistical Mechanics and its Applications, 389(17):3678–3691.

    Article  Google Scholar 

  54. Zhang, D.-M., Du, F., Huang, H., Zhang, F., Ayyub, B. M., & Beer, M. (2018). Resiliency assessment of urban rail transit networks: Shanghai metro as an example. Safety Science, 106:230–243.

    Article  Google Scholar 

  55. Masucci, A. P., Stanilov, K., & Batty, M. (2014). Exploring the evolution of london’s street network in the information space: A dual approach. Physical Review E, 89(1):012805.

    Article  Google Scholar 

  56. Meng, X., Jia, L., **e, J., Qin, Y., & Xu, J. (2010). Complex characteristic analysis of passenger train flow network. In 2010 Chinese Control and Decision Conference (pp. 2533–2536). New York: IEEE.

    Chapter  Google Scholar 

  57. Huang, A., Michael Zhang, H., Guan, W., Yang, Y., & Zong, G. (2015). Cascading failures in weighted complex networks of transit systems based on coupled map lattices. In Mathematical Problems in Engineering, 2015.

    Google Scholar 

  58. Suto, K., Nishiyama, H., Kato, N., Nakachi, T., Fujii, T., & Takahara, A. (2013). THUP: A P2P network robust to churn and dos attack based on bimodal degree distribution. IEEE Journal on Selected Areas in Communications, 31(9):247–256.

    Article  Google Scholar 

  59. Tanizawa, T., Paul, G., Cohen, R., Havlin, S., & Stanley, H. E. (2005). Optimization of network robustness to waves of targeted and random attacks. Physical Review E, 71(4):047101.

    Article  Google Scholar 

  60. Sonawane, A. R., Bhattacharyay, A., Santhanam, M. S., & Ambika, G. (2012). Evolving networks with bimodal degree distribution. The European Physical Journal B, 85(4):118.

    Article  Google Scholar 

  61. **ao, S., **ao, G., Cheng, T. H., Ma, S., Fu, X., & Soh, H. (2010). Robustness of scale-free networks under rewiring operations. EPL (Europhysics Letters), 89(3):38002.

    Article  Google Scholar 

  62. Herrmann, H. J., Schneider, C. M., Moreira, A. A., Andrade, J. S. Jr., & Havlin, S. (2011). Onion-like network topology enhances robustness against malicious attacks. Journal of Statistical Mechanics: Theory and Experiment, 2011(01):P01027.

    Article  Google Scholar 

  63. Buesser, P., Daolio, F., & Tomassini, M. (2011). Optimizing the robustness of scale-free networks with simulated annealing. In International Conference on Adaptive and Natural Computing Algorithms (pp. 167–176). New York: Springer.

    Chapter  Google Scholar 

  64. Zhao, K., Kumar, A., & Yen, J. (2010). Achieving high robustness in supply distribution networks by rewiring. IEEE Transactions on Engineering Management, 58(2):347–362.

    Article  Google Scholar 

  65. Tanizawa, T., Havlin, S., & Stanley, H. E. (2012). Robustness of onionlike correlated networks against targeted attacks. Physical Review E, 85(4):046109.

    Article  Google Scholar 

  66. Zheng, G., & Liu, Q. (2013). Scale-free topology evolution for wireless sensor networks. Computers & Electrical Engineering, 39(6):1779–1788.

    Article  Google Scholar 

  67. Zhou, M., & Liu, J. (2014). A memetic algorithm for enhancing the robustness of scale-free networks against malicious attacks. Physica A: Statistical Mechanics and Its Applications, 410:131–143.

    Article  Google Scholar 

  68. Peng, H., Si, S., Awad, M. K., Zhang, N., Zhao, H., & Shen, X. S. (2016). Toward energy-efficient and robust large-scale wsns: a scale-free network approach. IEEE Journal on Selected Areas in Communications, 34(12):4035–4047.

    Article  Google Scholar 

  69. Qiu, T., Zhao, A., **a, F., Si, W., & Wu, D. O. (2017). Rose: Robustness strategy for scale-free wireless sensor networks. IEEE/ACM Transactions on Networking, 25(5):2944–2959.

    Article  Google Scholar 

  70. Paterson, J., & Ombuki-Berman, B. (2018). Optimizing scale-free network robustness with the great deluge algorithm. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 434–446). New York: Springer.

    Google Scholar 

  71. Rong, L., & Liu, J. (2018). A heuristic algorithm for enhancing the robustness of scale-free networks based on edge classification. Physica A: Statistical Mechanics and its Applications, 503:503–515.

    Article  Google Scholar 

  72. Hu, S., & Li, G. (2018). Fault-tolerant clustering topology evolution mechanism of wireless sensor networks. IEEE Access, 6:28085–28096.

    Article  Google Scholar 

  73. Newman, M. E. J. (2002). Assortative mixing in networks. Physical Review Letters, 89(20):208701.

    Article  Google Scholar 

  74. Liu, J., Qiu, T., Zhang, S., Qu, W., & Sun, Q. (2018). A three dimensions deployment model for internet of things. In 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)) (pp. 859–863). New York: IEEE.

    Chapter  Google Scholar 

  75. Qiu, T., Liu, J., Si, W., & Wu, D. O. (2019). Robustness optimization scheme with multi-population co-evolution for scale-free wireless sensor networks. In IEEE/ACM Transactions on Networking, 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, T., Chen, N., Zhang, S. (2022). Preliminaries of Robustness Optimization. In: Robustness Optimization for IoT Topology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9609-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9609-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9608-4

  • Online ISBN: 978-981-16-9609-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation