Aspergillus-Mediated Bioremediation of Agrochemicals: Current Progress and Future Perspectives

  • Chapter
  • First Online:
Agrochemicals in Soil and Environment

Abstract

In modern agriculture, several synthetic chemicals are used to achieve higher crop production and to mitigate biotic stresses in plants. Crop productivity has increased over the last few decades as a result of the use of newer technologies and stress control measures but due to excessive use of agrochemicals to tackle the problem of crop damage during the pre- and post-harvest period, it has become a significant threat to the productivity and sustainability of the ecosystem. Bioremediation technique has been used for degradation/removal of agrochemicals from the environment. Microbial bioremediation is utilizing the potential of microorganisms to remove the toxic materials from the environment. The role of several strains of Aspergillus in bioremediation of agrochemicals is well understood, and due to its cosmopolitan distribution, it has a great potential for in situ bioremediation. A diverse array of secondary metabolites, bioactive peptides, enzymes and lectins secreted by Aspergillus strains are reported to aid in breaking down the complex agrochemicals. In this review, we have discussed the role of the fungal genus Aspergillus in the bioremediation of the agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Alrahman S, Ashraf AM (2014) Mycoremediation of organophosphorous insecticide chlorpyrifos by fungal soil isolates. J Pure Appl Microbiol 8:2945–2951

    Google Scholar 

  • Abdel-Azeem AM, Abdel Azeem M, Abdul-Hadi S, Darwish A (2019) Aspergillus: biodiversity, ecological significances, and industrial applications. In: Recent advancement in white biotechnology through fungi. Diversity and enzymes perspectives, vol 1. Springer, New York, pp 121–179

    Chapter  Google Scholar 

  • Abdel-Megeed A (2013) Biodegradation of Glyphosate by fungal strains isolated from herbicides polluted-soils in Riyadh area. Int J Curr Microbiol App Sci 2:359–381

    Google Scholar 

  • Abraham J, Mukherjee P, Bose D, Dutta A (2016) Utilization of monocrotophos by Aspergillus sojae strain JPDA1 isolated from sugarcane fields of Vellore district in India. Res J Pharm Technol 9:2155–2160

    Article  Google Scholar 

  • Adelowo F, Olu-arotiowa O, Amuda O (2014) Biodegradation of glyphosate by fungi species. Adv Biosci Bioeng 2:104–118

    Google Scholar 

  • Adelowo F, Omotayo A, Abdur-Rahim G, Onawumi OOE, Andfalana O (2015) Biodegradation of Organophosphonates by Aspergillus Species. Orient J Chem 31:165–171

    Article  Google Scholar 

  • Ahmad K (2020a) Environmental contaminant 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide remediation via Xanthomonas axonopodis and Aspergillus niger. Environ Res 182:109117

    Article  CAS  PubMed  Google Scholar 

  • Ahmad K (2020b) Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia Microbiol 65:801–810

    Article  CAS  Google Scholar 

  • Ahmad K, Gul P (2020) Fungicide isopyrazam degradative response toward extrinsically added fungal and bacterial strains. J Basic Microbiol 60:484–493

    Article  CAS  PubMed  Google Scholar 

  • Ahmad K, Gul P, Gul M (2020) Efficient fungal and bacterial facilitated remediation of Thiencarbazone methyl in the environment. Environ Res 188:109811

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M, Mahboob S, Sultana S, Sultana T, Alghanim KA, Ahmed Z (2014) Assessment of pesticide residues in flesh of Catla catla from Ravi River, Pakistan. Sci World J 2014:708532

    Article  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarenga N, Birolli WG, Seleghim MH, Porto AL (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52

    Article  CAS  PubMed  Google Scholar 

  • Anitha S, Das SSM (2011) Mycoremediation of monocrotophos. Int J Pharm Bio Sci 2:B337–B342

    Google Scholar 

  • Ansari MS, Moraiet M, Ahmad S (2014) Insecticides: impact on the environment and human health. Environ Deteriorat Hum Health 6:99–123

    Article  Google Scholar 

  • Arfarita N, Imai T, Prasetya B (2014) Potential use of soil-born fungi isolated from treated soil in Indonesia to degrade glyphosate herbicide. J Degrade Min Land Manage 1:63–68

    Google Scholar 

  • Ayres RU, Ayres LW (2000) The life cycle of chlorine, part IV: accounting for persistent cyclic organochlorines. J Ind Ecol 4:121–159

    Google Scholar 

  • Barberis CL, Carranza CS, Chiacchiera SM, Magnoli CE (2013) Influence of herbicide glyphosate on growth and aflatoxin B1 production by Aspergillus section Flavi strains isolated from soil on in vitro assay. J Environ Sci Health B 48:1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Barberis CL, Carranza CS, Magnoli K, Benito N, Magnoli CE (2019) Development and removal ability of non-toxigenic Aspergillus section Flavi in presence of atrazine, chlorpyrifos and endosulfan. Rev Argent Microbiol 51:3–11

    PubMed  Google Scholar 

  • Benito N, Carranza CS, Magnoli CE, Barberis CL (2019) Effect of atrazine on growth and production of AFB1 in Aspergillus section Flavi strains isolated from maize soils. Mycotoxin Res 35:55–64

    Article  CAS  PubMed  Google Scholar 

  • Benito N, Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL (2021) Influence of a glyphosate-based herbicide on growth parameters and aflatoxin B1 production by Aspergillus section Flavi on maize grains. Rev Argent Microbiol 53:162–170

    PubMed  Google Scholar 

  • Bhalerao T (2013a) Biominerlization and possible endosulfan degradation pathway adapted by Aspergillus niger. J Microbiol Biotechnol 23:1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao TS (2013b) Combined bioaugmentation and biostimulation - to cleanup endosulfan contaminated soil. Asian J Appl Sci 1:2321–2893

    Google Scholar 

  • Bhalerao T, Puranik P (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321

    Article  CAS  Google Scholar 

  • Bhalerao T, Puranik P (2009) Microbial degradation of monocrotophos by Aspergillus oryzae. Int Biodeterior Biodegrad 63:503–508

    Article  CAS  Google Scholar 

  • Bhatt (2015) Enhanced biodegradation of endosulfan by Aspergillus and Trichoderma spp. isolated from an agricultural field of Tarai Region of Uttarakhand. Pestic Res J 27:223–230

    Google Scholar 

  • Birolli WG, Vacondio B, Alvarenga N, Seleghim M, Porto A (2018) Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere 197:651–660

    Article  CAS  PubMed  Google Scholar 

  • Boedeker W, Watts M, Clausing P et al (2020) The global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20:1875

    Article  PubMed  PubMed Central  Google Scholar 

  • Boschin G, D’Agostina A, Arnoldi A, Marotta E, Zanardini E, Negri M, Valle A, Sorlini C (2003) Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J Environ Sci Health B 38:737–746

    Article  PubMed  Google Scholar 

  • Brar A (2020) Herbicide residue in soil, crop produce and in underground water: a review. Int J Chem Stud 8:1173–1175

    Article  CAS  Google Scholar 

  • Bravim NPB, Alves AF, Orlanda JFF (2020) Biodegradation of atrazine, glyphosate and pendimetaline employing fungal consortia. Res Soc Dev 9:2525–3409

    Article  Google Scholar 

  • Bujacz B, Wieczorek P, Krzysko-Łupicka T, Golab Z, Lejczak B, Kavfarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61:2905–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderbank A (1989) The occurrence and significance of bound pesticide residues in soil. Rev Environ Contam Toxicol 108:71–103

    Article  CAS  Google Scholar 

  • Carranza C, Barberis C, Chiacchiera SM, Magnoli C (2014a) Influence of the pesticides glyphosate, chlorpyrifos and atrazine on growth parameters of nonochratoxigenic Aspergillus section Nigri strains isolated from agricultural soils. J Environ Sci Health C Part B 49:747–755

    Article  CAS  Google Scholar 

  • Carranza CS, Bergesio MV, Barberis CL, Chiacchiera SM, Magnoli CE (2014b) Survey of Aspergillus section Flavi presence in agricultural soils and effect of glyphosate on nontoxigenic A. flavus growth on soil-based medium. J Appl Microbiol 116:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Carranza CS, Barberis CL, Chiacchiera SM, Dalcero AM, Magnoli CE (2016) Isolation of culturable mycobiota from agricultural soils and determination of tolerance to glyphosate of nontoxigenic Aspergillus section Flavi strains. J Environ Sci Health B 51:35–43

    Article  CAS  PubMed  Google Scholar 

  • Carranza C, Regñicoli J, Aluffi M, Benito N, Chiacchiera SM, Barberis C, Magnoli C (2019) Glyphosate in vitro removal and tolerance by Aspergillus oryzae in soil microcosms. Int J Environ Sci Technol 16:1–10

    Article  Google Scholar 

  • Cencelj J, Dorer M (1974) Pesticide residues in soil and water. ArhHig Rada Toksikol 25:253–256

    CAS  Google Scholar 

  • Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and ground waters. Water Res 37:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yang B, Wang H, He F, Gao Y, Scheel RA (2015) Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination. Environ Sci Pollut Res Int 22:996–1007

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhou Q, Liu F, Peng Q, Teng P (2019) Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase. Chemosphere 233:49–56

    Article  CAS  PubMed  Google Scholar 

  • Chuang CC, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584

    Article  CAS  Google Scholar 

  • Chun M, Chngchun S, Yanghao G, Shi **an'ai Jianfeng C, Fen Y (2004) Study on characteristics of biocometabolic removal of omethoate by the Aspergillus spp. Water Res 38(5):1139–1146

    Article  PubMed  Google Scholar 

  • Cycoń M, Piotrowska-Seget Z (2016) Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Front Microbiol 7:1463

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Silva N, Birolli W, Nitschke M, Rezende M, Seleghim M, Porto A (2015) Biodegradation of chlorpyrifos by whole cells of marine-derived fungi Aspergillus sydowii and Trichoderma sp. J Microb Biochem Technol 7:133–139

    Google Scholar 

  • Das AC, Chakravarty A, Sukul P, Mukherjee D (2003) Influence and persistence of phorate and carbofuran insecticides on microorganisms in rice field. Chemosphere 53:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Davis DW (1952) Some effects of DDT on spider mites. J Econ Entomol 45:1011–1019

    Article  CAS  Google Scholar 

  • De Schrijver A, De Mot R (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25:85–119

    Article  PubMed  Google Scholar 

  • De Souza R, Seibert D, Quesada HB, Fatima de J, Fagundes-Klen M, Bergamasco R (2020) Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf Environ 135:22–37

    Article  Google Scholar 

  • Deb N, Das S (2013) Chlorpyrifos toxicity in fish: a review. Curr World Environ 8:1–7

    Article  Google Scholar 

  • Deng W, Lin D, Yao K, Yuan H, Wang Z, Li J, Zou L, Han X, Zhou K, He L, Hu X, Liu S (2015) Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl Microbiol Biotechnol 99:8187–8198

    Article  CAS  PubMed  Google Scholar 

  • Derbalah A, Khattab I, Saad Allah M (2020) Isolation and molecular identification of Aspergillus flavus and the study of its potential for malathion biodegradation in water. World J Microbiol Biotechnol 36:91

    Article  CAS  PubMed  Google Scholar 

  • Derbalah A, Massoud A, El-Mehasseb I, Allah M, Sayed AM, Albrakati A, Elmahallawy E (2021) Microbial detoxification of dimethoate and methomyl residues in aqueous media. Watermark 13:1117

    Article  CAS  Google Scholar 

  • Devi P, Thomas J, Raju RK (2017) Pesticide consumption in India: a spatiotemporal analysis. Agric Econ Res Rev 30:163–172

    Article  Google Scholar 

  • Dich J, Zahm SH, Hanberg A, Adami HO (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  CAS  PubMed  Google Scholar 

  • Díez Aida M, Sanromán M, Pazos M (2018) New approaches on the agrochemicals degradation by UV oxidation processes. Chem Eng J 376:120026

    Article  Google Scholar 

  • Dolar F (2002) Antagonistic effect of Aspergillus melleus Yukawa on soilborne pathogens of chickpea. Tarım Bilimleri Dergisi 8:167–170

    Article  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Edwards CA (1973) Pesticide residues in soil and water. In: Edwards CA (ed) Environmental pollution by pesticides, vol 3. Plenum Press, London, pp 409–458

    Chapter  Google Scholar 

  • El Hussein A, Mohamed A, Siddig M, Osman A (2011) Degradation of oxyfluorfen herbicide by soil microorganisms. Biotechnology 10:274–279

    Article  Google Scholar 

  • Fadaei A, Dehghani MH, Nasseri S, Mahvi AH, Rastkari N, Shayeghi M (2012) Organophosphorous pesticides in surface water of Iran. Bull Environ Contam Toxicol 88:867–869

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Song F (2014) Bioremediation of atrazine: recent advances and promises. J Soils Sediments 14:1727–1737

    Article  CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique and global herbcide. American Chemical Society, Washington DC, p 653

    Google Scholar 

  • Fu GM, Li RY, Li KM, Hu M, Yuan XQ, Li B, Wang FX, Liu CM, Wan Y (2016) Optimization of liquid-state fermentation conditions for the glyphosate degradation enzyme production of strain Aspergillus oryzae by ultraviolet mutagenesis. Prep Biochem Biotechnol 46:780–787

    Article  CAS  PubMed  Google Scholar 

  • Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y (2017) Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol 47:782–788

    Article  CAS  PubMed  Google Scholar 

  • Gagic V, Kleijn D, Báldi A, Boros G et al (2017) Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol Lett 20:1427–1436

    Article  PubMed  Google Scholar 

  • Gajendiran A, Vijayavenkatesan V, Abraham J (2017) Bioremediation of herbicide atrazine by fungal sp. Aspergillus alliaceus strain JAV1 isolated from paddy field soil in Vellore. Asian J Water Environ Pollut 14:75–82

    Article  Google Scholar 

  • Gangola S, Pankaj Khati P, Sharma A (2015) Mycoremediation of imidaclopridin the presence of different soil amendments using Trichoderma_longibrachiatum and Aspergillus oryzae isolated from pesticide contaminated agricultural fields of Uttarakhand. J Bioremed Biodegr 6:100310

    Google Scholar 

  • Gao J, Liu L, Liu X, Zhou H, Lu J, Huang S, Wang Z (2009) The occurrence and spatial distribution of organophosphorous pesticides in Chinese surface water. Bull Environ Contam Toxicol 82:223–229

    Article  CAS  PubMed  Google Scholar 

  • Gilani RA, Rafique M, Rehman A, Munis MF, Rehman SU, Chaudhary HJ (2016) Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. J Basic Microbiol 56:105–119

    Article  CAS  PubMed  Google Scholar 

  • Gilliom RJ, Barbash JE, Crawford GG, Hamilton PA, Martin JD, Nakagaki N, Nowell LH, Scott JC, Stackelberg PE, Thelin GP, Wolock DM (2007) The quality of our nation’s waters—pesticides in the nation’s streams and ground water 1992–2001, p 134

    Google Scholar 

  • Goswami S, Vig K, Singh DK (2009) Biodegradation of alpha and beta endosulfan by Aspergillus sydoni. Chemosphere 75:883–888

    Article  CAS  PubMed  Google Scholar 

  • Gundi VAKB, Narasimha G, Reddy BR (2005) Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil. J Environ Sci Health Part B 40:69–283

    Article  Google Scholar 

  • Guo H, Luo S, Chen L, **ao X, ** Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8605

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK (2004) Pesticide exposure–Indian scene. Toxicology 198:83–90

    Article  CAS  PubMed  Google Scholar 

  • Hallberg G (1989) Pesticides pollution of groundwater in the humid United States. Agric Ecosyst Environ 26:299–367

    Article  CAS  Google Scholar 

  • Hamad M (2020) Biodegradation of diazinon by fungal strain Aspergillus niger MK640786 using response surface methodology. Environ Technol Innov 18:100691

    Article  Google Scholar 

  • Hayat K, Ashfaq M, Ashfaq U, Saleem Dr MA (2010) Determination of pesticide residues in blood samples of villagers involved in pesticide application at District Vehari (Punjab), Pakistan. Afr J Environ Sci Technol 4:666–684

    CAS  Google Scholar 

  • He Y, Su C (2015) Use of additives in bioremediation of contaminated groundwater and soil. Intech Open, London, pp 145–164

    Google Scholar 

  • Herrera-Gallardo B, Guzmán-Gil R, Colín-Luna J-A, Martínez JC, León-Santiesteban H, Brambila O, González-Brambila M (2020) Atrazine biodegradation in soil by Aspergillus niger. Can J Chem Eng 99:932–946

    Article  Google Scholar 

  • Huang Y, **ao L, Li F et al (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23:2313

    Article  PubMed Central  Google Scholar 

  • Hussain S, Arshad M, Saleem M, Zahir Z (2007) Screening of soil fungi for in vitro degradation of endosulfan. World J Microbiol Biotechnol 23:939–945

    Article  CAS  Google Scholar 

  • Hussaini SZ, Shaker M, Mohammed AI (2013) Isolation of fungal isolates for degradation of selected pesticides. Life Sci 2:50–53

    CAS  Google Scholar 

  • Hussein Adil EL, Mohamed A, Siddig M, Osman A (2011) Degradation of oxyfluorfen herbicide by soil microorganisms. Biotechnol J 10:274–279

    Google Scholar 

  • Hwang JI, Zimmerman AR, Kim JE (2018) Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. Sci Total Environ 627:514–522

    Article  CAS  PubMed  Google Scholar 

  • Islas-Pelcastre M, Villagómez-Ibarra J, Rodríguez-Pastrana B, Perry G, Madariaga-Navarrete A (2015) Identification of an indigenous atrazine herbicide tolerant microbial consortium in beans (Phaseolus vulgaris L.) as a potential soil bioremediator. Agrotechnology 5:141

    Article  Google Scholar 

  • Iyaniwura TT (1991) Non-target and environmental hazards of pesticides. Rev Environ Health 9:161–176

    CAS  PubMed  Google Scholar 

  • Jain R, Garg V (2013) Enzymatic degradation of monocrotophos by extracellular fungal OP hydrolases. Biotechnol Appl Biochem 171:1473–1486

    Article  CAS  Google Scholar 

  • Jain R, Garg V (2015) Degradation of monocrotophos in sandy loam soil by Aspergillus sp. Iran J Energy Environ 6:56–62

    Google Scholar 

  • Jain R, Veena G, Singh K, Sheetal G (2012) Isolation and characterization of monocrotophos degrading activity of soil fungal isolate Aspergillus Niger MCP1 (ITCC7782.10). Int J Environ Sci 3:841–850

    CAS  Google Scholar 

  • Jain R, Garg V, Yadav D (2014) In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegradation 25:437–446

    Article  CAS  PubMed  Google Scholar 

  • James A, Emmanuel D (2021) An overview of endosulfan and the aftermath of its biohazardous administration in Southern India. Eur J Mol Clin Med 8:212–218

    Google Scholar 

  • Joseph L, Sylas V, Cyril N, Santhosh S, Varghese A, Anila BN, Kunjankutty S, Kasu S (2020) Organochlorine pesticides in the soils of Cardamom Hill Reserve (CHR), Kerala, India: geo spatial distribution, ecological and human health risk assessment. Environ Chem Ecotoxicol 2:1–11

    Article  Google Scholar 

  • Kah M, Brown C (2006) Adsorption of ionisable pesticides in soils. Rev Environ Contamt 188:149–217

    CAS  Google Scholar 

  • Kanaly RA, Kim IS, Hur HG (2005) Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. J Agric Food Chem 53:6426–6431

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran CO (1958) The Kerala food poisoning. J Indian Med Assoc 31:204–205

    CAS  PubMed  Google Scholar 

  • Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065

    Article  CAS  Google Scholar 

  • Kaufman DD, Joan B (1970) Degradation of atrazine by soil fungi. Soil Biol Biochem 2:73–80

    Article  CAS  Google Scholar 

  • Kaur P, Balomajumder C (2020) Effective mycoremediation coupled with bioaugmentation studies: An advanced study on newly isolated Aspergillus sp. in type-II pyrethroid-contaminated soil. Environ Pollut 261:114073

    Article  CAS  PubMed  Google Scholar 

  • Kettles MK, Browning SR, Prince TS, Horstman SW (1997) Triazine herbicide expo-sure and breast cancer incidence: an ecologic study of Kentucky counties. Environ Health Perspect 105:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Pathera A, Saini P, Kumar M (2012) Harmful effects of pesticides on human health. Ann Agric Biol Res 17:165–168

    Google Scholar 

  • Kumari B, Madan VK, Kathpal TS (2007) Pesticide residues in rain water from Hisar, India. Environ Monit Assess 133:467–471

    Article  CAS  PubMed  Google Scholar 

  • Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420

    Article  CAS  PubMed  Google Scholar 

  • Liu YH, Chung YC, **ong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Chen X, Yi S, Su Zhen C (2012) Bacterial degradation of chlorpyrifos by Bacillus cereus. Adv Mater Res 356:676–680

    Google Scholar 

  • Liu Q, Liu Y, Dong F, Sallach J, Wu X, Liu X, Xu J, Zheng Y, Li Y (2021) Uptake kinetics and accumulation of pesticides in wheat (Triticum aestivum L.): impact of chemical and plant properties. Environ Pollut 275:116637

    Article  CAS  PubMed  Google Scholar 

  • Lone MA, Mohd W (2012) Degradation of dimethoate and pyrethroid by using fungal strains isolated from the rhizosphere of Juglans regia L. in the northern region of Jammu and Kashmir, India. Int J Pharm Bio Sci 3:716–723

    Google Scholar 

  • Lopes B, Egea T, Monteiro D, Vici A, Grunig D, Lisboa D, Almeida E, Parsons J, Da Silva R, Gomes E (2016) Evaluation of diuron tolerance and biotransformation by fungi from a sugar cane plantation Sandy-Loam soil. J Agric Food Chem 64:2968–9275

    Google Scholar 

  • Lu J, Li R, Chang Y, Zhang Y, Zhang Y, Tao L, Xu W (2021) Effects of different parameters on the removal of atrazine in a water environment by Aspergillus oryzae biosorption. J Pestic Sci 46:214–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubna AS, Hamayun M, Gul H, Lee I, Hussain A (2018) Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J Plant Interact 13:100–111

    Article  CAS  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Plant, soil and microbes. Springer, New York, pp 253–269

    Chapter  Google Scholar 

  • Maitan-Alfenas G, Oliveira M, Nagem R, Vries RP, Guimaraes V (2016) Characterization and biotechnological application of recombinant xylanases from Aspergillus nidulans. Int J Biol Macromol 91:60–67

    Article  CAS  PubMed  Google Scholar 

  • Majewski MS, Capel PD (1995) Pesticides in the atmosphere distribution, trends and governing factors. U.S. Geological Survey Open-File Report 94-506

    Google Scholar 

  • Majewski MS, Coupe RH, Foreman WT, Capel PD (2014) Pesticides in Mississippi air and rain: a comparison between 1995 and 2007. Environ Toxicol Chem 33:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Marinho G, Barbosa BCA, Rodrigues K, Aquino M, Pereira L (2017) Potential of the filamentous fungus Aspergilus niger AN400 to degrade atrazine in wastewaters. Biocatal Agric Biotechnol 9:162–167

    Article  Google Scholar 

  • Massoud AH, Derbalah AS, Belal E (2008) Microbial detoxification of metalaxyl in aquatic system. J Environ Sci 20:262–267

    Article  CAS  Google Scholar 

  • Massoud A, Derbalah A, El-Mehasseb I, Allah M (2017) Chemical and biological remediation of lindane residue in aqueous media. Int J Eng Res 8:2229–5518

    Google Scholar 

  • Mathialagan T, Viraraghavan T (2005) Biosorption of pentachlorophenol by fungal biomass from aqueous solutions: a factorial design analysis. Environ Technol 26:571–579

    Article  CAS  PubMed  Google Scholar 

  • Matsumura F (1985) Effects of pesticides on wildlife. In: Toxicology of insecticides. Springer, Boston, pp 437–487

    Chapter  Google Scholar 

  • Maya K, Upadhyay SN, Singh RS, Dubey SK (2012) Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresour Technol 126:216–223

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Landscape 9:34

    Google Scholar 

  • Mitra J, Mukherjee P, Kale S, Murthy NBK (2001) Bioremediation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegradation 12:235–245

    Article  CAS  PubMed  Google Scholar 

  • Mohammed Y, Badawy M (2017) Biodegradation of imidacloprid in liquid media by an isolated wastewater fungus Aspergillus terreus YESM3. J Environ Sci Health B 52:752–761

    Article  CAS  PubMed  Google Scholar 

  • Mohan M, Haider S, Andola H, Purohit V (2011) Essential oils as green pesticides: for sustainable. J Pharm Biol Chem Sci 2:100–106

    Google Scholar 

  • Mohapatra SP, Gajbhiye VT, Agnihotri NP, Raina M (1995) Insecticide pollution of Indian rivers. Environmentalist 15:41–44

    Article  Google Scholar 

  • Mojsov K (2016) Aspergillus enzymes for food industries, pp 215–222

    Google Scholar 

  • Mukherjee I, Archana M (2007) Dissipation of β-cyfluthrin by two fungi Aspergillus nidulans var. dentatus and Sepedonium maheswarium. Toxicol Environ Chem 89:319–326

    Article  CAS  Google Scholar 

  • Mukherjee I, Gopal M (1994) Degradation of beta-endosulfan by Aspergillus Niger. Toxicol Environ Chem 46:217–221

    Article  CAS  Google Scholar 

  • Mukherjee I, Gopal M (1996) Degradation of Chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57:145–151

    Article  CAS  Google Scholar 

  • Mukherjee I, Mittal A (2005) Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum. Bull Environ Contam Toxicol B Environ Contam Tox 75:1034–1040

    Article  CAS  Google Scholar 

  • Mukhtar H, Khizer I, Nawaz A, Haq I (2015) Biodegradation of endosulfan by Aspergillus niger isolated from cotton fields of Punjab, Pakistan. Pak J Bot 47:333–336

    CAS  Google Scholar 

  • Nayak P, Solanki H (2021) Pesticides and Indian agriculture- a review. Int J Res 9:250–263

    Google Scholar 

  • Nayak S, Samanta S, Mukherjee A (2020) Beneficial role of Aspergillus sp. In: Agricultural soil and environment. Springer, New York, pp 17–36

    Google Scholar 

  • Njoku K, Eludini P, Adesuyi A, Ude E (2020) Physiological and molecular characterization of active fungi in pesticides contaminated soils for degradation of glyphosate. https://doi.org/10.21203/rs.3.rs-27821/v3

  • Nohara S, Iwakuma T (1996) Pesticide residues in water and an aquatic plant, Nelumbo nucifera, in a river mouth at Lake Kasumigaura, Japan. Chemosphere 33:1409–1416

    Article  CAS  Google Scholar 

  • Norris LA (1974) Behavior of pesticides in plants. In: USDA forest service general technical report PNW19. Oregon State University, Portland

    Google Scholar 

  • Olawale A, Kolawole A, Olubiyi A (2011) Biodegradation of glyphosate pesticide by bacteria isolated from agricultural soil. Rep Opin 3:124–128

    Google Scholar 

  • Oliveira BR, Penetra A, Cardoso VV, Benoliel MJ, Crespo Barreto MT, Samson RA, Pereira VJ (2015) Biodegradation of pesticides using fungi species found in the aquatic environment. Environ Sci Pollut Res 22:11781–11791

    Article  CAS  Google Scholar 

  • Olu-Arotiowa O, Ajani A, Aremu M, Agarry S (2019) Bioremediation of atrazine herbicide contaminated soil using different bioremediation strategies. J Environ Manag 23:99–109

    CAS  Google Scholar 

  • Pandey R, Choudhury PP (2021) Aspergillus niger-mediated degradation of orthosulfamuron in rice soil. Environ Monit Assess 192:813

    Article  PubMed  Google Scholar 

  • Pandey B, Baghel PS, Shrivastava S (2014) To study the bioremediation of monocrotophos and to analyze the kinetics effect of tween 80 on fungal growth. Indo Am J Pharm Res 4:925–930

    Google Scholar 

  • Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B (2017) Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 10:296–322

    Article  PubMed  Google Scholar 

  • Pawar N, Patil V, Kamble S, Dixit G (2008) First report of Aspergillus niger as a Plant Pathogen on Zingiber officinale from India. Plant Dis 92:1368

    Article  CAS  PubMed  Google Scholar 

  • Peillex C, Pelletier M (2020) The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 17:163–174

    Article  CAS  PubMed  Google Scholar 

  • Pinto AP, Serrano C, Thales P, Eunice M, Luís D, Teixeira D, Ana C (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435:402–410

    Article  PubMed  Google Scholar 

  • Plotegher F, Ribeiro C (2016) Characterization of single superphosphate powders – a study of milling effects on solubilization kinetics. Mater Res-Ibero Am J 19:98–105

    Article  CAS  Google Scholar 

  • Pujar NK, Premakshi HG, Laad S, Pattar SV, Mirjankar M, Kamanavalli CM (2018) Biodegradation of chlorpropham and its major products by Bacillus licheniformis NKC-1. World J Microbiol Biotechnol 34:112

    Article  PubMed  Google Scholar 

  • Rodrigues K, Araujo R, Pinheiro Z, Silva G (2011) Glucose effect on degradation kinetics of methyl parathion by filamentous fungi species Aspergillus Niger AN400. Engenharia Sanitaria Ambiental 16:225–230

    Article  Google Scholar 

  • Saikia N, Gopal M (2004) Biodegradation of beta-cyfluthrin by fungi. J Agric Food Chem 52:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Salama A (1998) Metabolism of carbofuran by Aspergillus and Fusarium Graminearum. J Environ Sci Health B 33:253–266

    Article  CAS  PubMed  Google Scholar 

  • Sankararamakrishnan N, Sharma A, Sanghi R (2005) Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India. Environ Int 31:113–120

    Article  CAS  PubMed  Google Scholar 

  • Santos A, Flores M (1995) Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett Appl Microbiol 20:349–352

    Article  CAS  Google Scholar 

  • Sanyal D, Kulshrestha G (2002) Metabolism of metolachlor by fungal cultures. J Agric Food Chem 50:499–505

    Article  CAS  PubMed  Google Scholar 

  • Sanyaolu A (2018) Verification of Aspergillus Niger as a myco-remediation agent of Lambda-Cyhalothrin and associated heavy metals in Lactuca Sativa (L.) leaf. J Appl Sci Environ Manag 22:621–624

    Google Scholar 

  • Sebastian A, Nangia A, Majeti P (2020) Advances in agrochemical remediation using nanoparticles. Chem Fertil 2020:465–485

    Google Scholar 

  • Sebiomo A, Banjo F (2020) The utilisation of herbicides by indigenous microorganisms obtained from Ago-Iwoye, Nigeria, for enhanced growth rates and as carbon source in-vitro. Cumhuriyet Sci J 41:784–801

    Article  Google Scholar 

  • Shah PC, Kumar VR, Dastager SG, Khire JM (2017) Phytase production by Aspergillus niger NCIM 563 for a novel application to degrade organophosphorus pesticides. AMB Express 7:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Shakir S, Kanwal M, Murad W, Rehman S, Khan D, Azizullah A (2016) Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). Ecotoxicology 25:329–341

    Article  CAS  PubMed  Google Scholar 

  • Shan M, Fang H, Wang X, Feng B, Chu **ao Q, Yu YL (2006) Effect of chlorpyrifos on soil microbial populations and enzyme activities. Res J Environ Sci 18:4–5

    CAS  Google Scholar 

  • Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Environ Agric Biotechnol 10:675–680

    Article  Google Scholar 

  • Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cog Food Agric 4:1436212

    Article  Google Scholar 

  • Shimabukuro HR, Swanson RH (1969) Atrazine metabolism, selectivity, and mode of action. J Agric Food Chem 17:199–205

    Article  CAS  Google Scholar 

  • Shukla G, Kumar A, Bhanti M, Joseph PE, Taneja A (2006) Organochlorine pesticide contamination of ground water in the city of Hyderabad. Environ Int 32:244–247

    Article  CAS  PubMed  Google Scholar 

  • Silambarasan S, Abraham J (2013a) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369

    Article  Google Scholar 

  • Silambarasan S, Abraham J (2013b) Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One 8:77170

    Article  Google Scholar 

  • Silva NA, Birolli WG, Seleghim M, Porto A (2013) Biodegradation of the organophosphate pesticide profenofos by marine. Fungi 166:112185

    Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Kumar V, Gill J, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J (2020a) Herbicide glyphosate: toxicity and microbial degradation. Int J Environ Res Pub 17:7519

    Article  CAS  Google Scholar 

  • Singh SI, Singh S, Bhawana Vig AP (2020b) Chapter 13 - earthworm-assisted bioremediation of agrochemicals. In: Prasad MNV (ed) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 307–327

    Chapter  Google Scholar 

  • Sjerps R, Kooij P, Loon A, Wezel A (2019) Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235:510–518

    Article  CAS  PubMed  Google Scholar 

  • Smith SN, Lyon AJE, Sahid IB (2006) The breakdown of paraquat and diquat by soil fungi. New Phytol 77:735–740

    Article  Google Scholar 

  • Soares P, Birolli W, Ferreira I, Porto A (2021) Biodegradation pathway of the organophosphate pesticides chlorpyrifos, methyl parathion and profenofos by the marine-derived fungus Aspergillus sydowii CBMAI 935 and its potential for methylation reactions of phenolic compounds. Mar Pollut Bull 166:112185

    Article  CAS  PubMed  Google Scholar 

  • Sondhia S, Waseem U, Varma RK (2013) Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere 93:2140–2147

    Article  CAS  PubMed  Google Scholar 

  • Sultana T, Murray C, Kleywegt S, Metcalfe CD (2018) Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada. Chemosphere 202:506–513

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Takeda M (1976) Microbial metabolism of n-methylcarbamate insecticide. III. Time course in metabolism of o-sec-butylphenyl n-methylcarbamate by Aspergillus niger and species differences among soil fungi. Chem Pharm Bull 24:1983–1987

    Article  CAS  Google Scholar 

  • Sviridov A, Shushkova T, Ermakova I, Ivanova E, Epiktetov D, Leontevskii A (2015) Microbial degradation of glyphosate herbicides. Прикладная биохимия и микробиология 51:183–190

    Article  CAS  Google Scholar 

  • Swe TM, Nandar W, Ei H, Win N, Swe K, Ko T, Win T (2020) Bio-removal efficiency of glyphosate by using indigenous laccase producing fungi. Biotechnology 7:249–256

    Google Scholar 

  • Tamim M, El-Hamid R (2016) Mycoremediation of chlorpyrifos and lambda-cyhalothrin by two species of filamentous fungi. Int J Environ Sci 73:1–14

    Google Scholar 

  • Taştan B, Dönmez G (2015) Biodegradation of pesticide triclosan by A. Versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Physiol 118:33–37

    Article  Google Scholar 

  • Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L (2019) Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? Sci Total Environ 684:314–325

    Article  CAS  PubMed  Google Scholar 

  • Thirugnanam J, Senthilkumar R (2016) Degradation of pesticide by using geofungi from Thanjavur District. IJSRM Hum 4:225–230

    CAS  Google Scholar 

  • Tian J, Dong Q, Yu C, Zhao R, **g W, Lanzhou C (2016) Biodegradation of the organophosphate trichlorfon and its major degradation products by a novel Aspergillus sydowii PA F-2. J Agric Food Chem 64:4280–4287

    Article  CAS  PubMed  Google Scholar 

  • Valavanidis A (2018) Glyphosate, the most widely used herbicide. Sci Rev 41:1

    Google Scholar 

  • Vorkamp K, Rigét FF (2014) A review of new and current-use contaminants in the Arctic environment: evidence of long-range transport and indications of bioaccumulation. Chemosphere 111:379–395

    Article  CAS  PubMed  Google Scholar 

  • Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL (2005) Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP). Chemosphere 60:1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Liu Y (2016) Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon. J Biosci 41:359–366

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang C, Li A, Gao J (2015) Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae DH19. Lett Appl Microbiol 61:403–410

    Article  CAS  PubMed  Google Scholar 

  • Ware GW (1980) Effects of pesticides on nontarget organisms. Residue Rev 76:173–201

    Article  CAS  PubMed  Google Scholar 

  • Weisenburger DD (1993) Human health effects of agrichemical use. Hum Pathol 26:571–576

    Article  Google Scholar 

  • Wirbisky SE, Freeman JL (2015) Atrazine exposure and reproductive dysfunction through the hypothalamus-pituitary-gonadal (HPG) axis. Toxics 3:414–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongputtisin P, Supo C, Suwannarach N, Honda Y, Nakazawa T, Kumla J, Lumyong S, Khanongnuch C (2021) Filamentous fungi with high paraquat-degrading activity isolated from contaminated agricultural soils in northern Thailand. Lett Appl Microbiol 72:467–475

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tao B, Zhang W, Zhang J (2008) Isolation and screening of microorganisms capable of degrading nicosulfuron in water. Front Agric 2:224–228

    Article  Google Scholar 

  • Yao Y, Galarneau E, Blanchard P, Alexandrou N, Brice KA (2007) Environ Sci Technol 41:7639–7644

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Bin L (2012) Dimethoate degradation and calcium phosphate formation induced by Aspergillus niger. Afr J Microbiol Res 6(50):7603–7609

    Article  CAS  Google Scholar 

  • Yu T, Ma F, Wang Y, Bai S (2019a) A bio-functions integration microcosm: self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms. J Hazard Mater 384:121326

    Article  PubMed  Google Scholar 

  • Yu T, Wang L, Ma F, Yang J, Bai S, You J (2019b) Self-immobilized biomixture with pellets of Aspergillus niger Y3 and Arthrobacter. sp ZXY-2 to remove atrazine in water: a bio-functions integration system. Sci Total Environ 689:875–882

    Article  CAS  PubMed  Google Scholar 

  • Zayed SM, Mostafa IY, Farghaly MM, Attaby HS, Adam YM, Mahdy FM (1983) Microbial degradation of trifluralin by Aspergillus carneus, Fusarium oxysporum and Trichoderma viride. J Environ Sci Health B 18:253–267

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Liu Y, Liu YH (2003) Purification and characterization of a novel carbaryl hydrolase from Aspergillus niger PY168. FEMS Microbiol Lett 228:39–44

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: With China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    CAS  Google Scholar 

  • Zhang C, Tao Y, Li S, Tian J, Ke T, Wei S, Wang P, Chen L (2019) Simultaneous degradation of trichlorfon and removal of Cd(II) by Aspergillus sydowii strain PA F-2. Environ Sci Pollut Res 26:26844–26854

    Article  CAS  Google Scholar 

  • Zhang C, Chen L, Si H, Gao W, Liu P, Zhang J (2020a) Study on the characteristics and mechanisms of nicosulfuron biodegradation by Bacillus velezensis CF57. J Basic Microbiol 60:649–658

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Chen Z, Tao Y, Ke T, Li S, Wang P, Chen L (2020b) Enhanced removal of trichlorfon and Cd (II) from aqueous solution by magnetically separable chitosan beads immobilized Aspergillus sydowii. Int J Biol Macromol 148:457–465

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Tao Y, Li S, Ke T, Wang P, Wei S, Chen L (2020c) Bioremediation of cadmium-trichlorfon co-contaminated soil by Indian mustard (Brassica juncea) associated with the trichlorfon-degrading microbe Aspergillus sydowii: related physiological responses and soil enzyme activities. Ecotoxicol Environ Saf 188:109756

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Li J, Yao K, Zhao N, Zhou K, Hu X, Zou L, Han X, Liu A, Liu S (2016) Degradation of 3-phenoxybenzoic acid by a filamentous fungus Aspergillus oryzae M-4 strain with self-protection transformation. Appl Microbiol Biotechnol 100:9773–9786

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj Agarwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, P., Agarwal, B., Agarwala, N. (2022). Aspergillus-Mediated Bioremediation of Agrochemicals: Current Progress and Future Perspectives. In: Naeem, M., Bremont, J.F.J., Ansari, A.A., Gill, S.S. (eds) Agrochemicals in Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-9310-6_22

Download citation

Publish with us

Policies and ethics

Navigation