MicroRNAs Targeting Tumor Microenvironment and Immune Modulation

  • Chapter
  • First Online:
Role of MicroRNAs in Cancers
  • 267 Accesses

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs (~22 nucleotides) that regulate transcriptional and translational processes. In particular, miRNAs act as a link between immune response and tumor development by regulating the activation and recruitment of immune cells in the tumor microenvironment, resulting in immune modulation through the secretion of immune stimulating or immunosuppressive factors and thus contributing to oncogenesis. MiRNA immune gene therapy has the potential to revolutionize cancer treatment since it allows for cell treatment and reintroduction into the patient, while also providing higher safety margins than other conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbari A, Ghahremani MH, Mobini GR, Abastabar M, Akhtari J, Bolhassani M et al (2015) Down-regulation of miR-135b in colon adenocarcinoma induced by a TGF-β receptor I kinase inhibitor (SD-208). Iran J Basic Med Sci 18(9):856

    PubMed  PubMed Central  Google Scholar 

  • Akinleye A, Rasool Z (2019) Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 12(1):1–13

    Article  CAS  Google Scholar 

  • Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiadou E, Stroopinsky D, Alimperti S, Jiao AL, Pyzer AR, Cippitelli C et al (2019) Epstein− Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 33(1):132–147

    Article  CAS  PubMed  Google Scholar 

  • Azoury SC, Straughan DM, Shukla V (2015) Immune checkpoint inhibitors for cancer therapy: clinical efficacy and safety. Curr Cancer Drug Targets 15(6):452–462

    Article  CAS  PubMed  Google Scholar 

  • Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D’ippolito E, Cataldo A et al (2016) Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis 7(7):e2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR (2020) Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol 13(3):100738

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhaskaran M, Mohan M (2014) MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol 51(4):759–774

    Article  CAS  PubMed  Google Scholar 

  • Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R et al (2011) The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 6(1):209–217

    Article  PubMed  Google Scholar 

  • Bruno A, Mortara L, Baci D, Noonan DM, Albini A (2019) Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. Front Immunol 10:771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnet F (1970) The concept of immunological surveillance. Immunol Aspects Neoplasia 13:1–27

    CAS  Google Scholar 

  • Chaudhary B, Elkord E (2016) Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccine 4(3):28

    Article  CAS  Google Scholar 

  • Chen C, Liu J-m, Luo Y-p (2020) MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages. J Zhejiang Univ Sci B 21(1):12–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen D, Yang X, Liu M, Zhang Z, **ng E (2021) Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 28:1256–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Chen Y, Zhao P, Liu X, Dong J, Li J et al (2016) Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF. Oncotarget 7(21):30702

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung SS, Hu W, Park CY (2011) The role of microRNAs in hematopoietic stem cell and leukemic stem cell function. Therap Adv Hematol 2(5):317–334

    Article  CAS  Google Scholar 

  • Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme dicer. J Exp Med 201(9):1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E et al (2020) miRNAs as influencers of cell–cell communication in tumor microenvironment. Cell 9(1):220

    Article  CAS  Google Scholar 

  • Corrales L, Matson V, Flood B, Spranger S, Gajewski TF (2017) Innate immune signaling and regulation in cancer immunotherapy. Cell Res 27(1):96–108

    Article  CAS  PubMed  Google Scholar 

  • Cortez MA, Anfossi S, Ramapriyan R, Menon H, Atalar SC, Aliru M et al (2019) Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosom Cancer 58(4):244–253

    Article  CAS  PubMed  Google Scholar 

  • Cristino AS, Nourse J, West RA, Sabdia MB, Law SC, Gunawardana J et al (2019) EBV microRNA-BHRF1-2-5p targets the 3′ UTR of immune checkpoint ligands PD-L1 and PD-L2. Blood 134(25):2261–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuiffo BG, Campagne A, Bell GW, Lembo A, Orso F, Lien EC et al (2014) MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 15(6):762–774

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Gu H, **ong X, Ao H, Cao J, Lin W et al (2019) MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance, and applications in human triple-negative breast cancer. Cell 8(12):1492

    Article  CAS  Google Scholar 

  • Dong Y, Sun Q, Zhang X (2017) PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget 8(2):2171

    Article  PubMed  Google Scholar 

  • Facciabene A, Motz GT, Coukos G (2012) T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72(9):2162–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 5(1):1–17

    Article  Google Scholar 

  • Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9(10):775–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gramantieri L, Giovannini C, Piscaglia F, Fornari F (2021) MicroRNAs as modulators of tumor metabolism, microenvironment, and immune response in hepatocellular carcinoma. J Hepato Carcinoma 8:369

    Article  Google Scholar 

  • Guerra L, Bonetti L, Brenner D (2020) Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep 32(1):107848

    Article  CAS  PubMed  Google Scholar 

  • Hallam S, Escorcio-Correia M, Soper R, Schultheiss A, Hagemann T (2009) Activated macrophages in the tumour microenvironment—dancing to the tune of TLR and NF-κB. J Pathol 219(2):143–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10(3):727

    CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Xu C (2020) Immune checkpoint signaling and cancer immunotherapy. Cell Res 30(8):660–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Wang G, Huang D, Sui M, Xu Y (2019) Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol 10:1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, **a J, Wang L, Wang X, Ma X, Deng Q et al (2018a) miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J Hematol Oncol 11(1):1–12

    CAS  Google Scholar 

  • Huang W, Wang W-T, Fang K, Chen Z-H, Sun Y-M, Han C et al (2018b) MIR-708 promotes phagocytosis to eradicate T-ALL cells by targeting CD47. Mol Cancer 17(1):1–6

    Article  CAS  Google Scholar 

  • Ingenito F, Roscigno G, Affinito A, Nuzzo S, Scognamiglio I, Quintavalle C et al (2019) The role of exo-miRNAs in cancer: a focus on therapeutic and diagnostic applications. Int J Mol Sci 20(19):4687

    Article  CAS  PubMed Central  Google Scholar 

  • Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo G, Wu C-Y, Yang H-Y (2019) MiR-17-92 cluster and immunity. J Formos Med Assoc 118(1):2–6

    Article  CAS  PubMed  Google Scholar 

  • Lee H-M, Kim TS, Jo E-K (2016) MiR-146 and miR-125 in the regulation of innate immunity and inflammation. BMB Rep 49(6):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhang J, Diao W, Wang D, Wei Y, Zhang C-Y et al (2014) MicroRNA-155 and MicroRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J Immunol 192(3):1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Li BL, Lu W, Qu JJ, Ye L, Du GQ, Wan XP (2019) Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol 234(3):2943–2953

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12(1):1–16

    Article  Google Scholar 

  • Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29(7):343–351

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Fan L, Yu H, Zhang J, He Y, Feng D et al (2019) Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology 70(1):241–258

    CAS  PubMed  Google Scholar 

  • Loh H-Y, Norman BP, Lai K-S, Rahman NMANA, Alitheen NBM, Osman MA (2019) The regulatory role of microRNAs in breast cancer. Int J Mol Sci 20(19):4940

    Article  CAS  PubMed Central  Google Scholar 

  • Lou Q, Liu R, Yang X, Li W, Huang L, Wei L et al (2019) miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J Immunother Cancer 7(1):1–14

    Article  Google Scholar 

  • Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N et al (2011) miR-135b mediates NPM-ALK–driven oncogenicity and renders IL-17–producing immunophenotype to anaplastic large cell lymphoma. Blood 118(26):6881–6892

    Article  CAS  PubMed  Google Scholar 

  • Meireson A, Devos M, Brochez L (2020) IDO expression in cancer: different compartment, different functionality? Front Immunol 11:2340

    Article  CAS  Google Scholar 

  • Min S, Li L, Zhang M, Zhang Y, Liang X, **e Y et al (2012) TGF-β-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3, p38 MAPK, MAP2K4 and MAP2K7. Genes Immun 13(8):621–631

    Article  CAS  PubMed  Google Scholar 

  • Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Diff 20(12):1603–1614

    Article  CAS  Google Scholar 

  • Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41):4231–4242

    Article  CAS  PubMed  Google Scholar 

  • Navin I, Lam MT, Parihar R (2020) Design and implementation of NK cell-based immunotherapy to overcome the solid tumor microenvironment. Cancers. 12(12):3871

    Article  CAS  PubMed Central  Google Scholar 

  • Nimmagadda S (2020) Quantifying PD-L1 expression to monitor immune checkpoint therapy: opportunities and challenges. Cancers. 12(11):3173

    Article  CAS  PubMed Central  Google Scholar 

  • Oweida A, Hararah MK, Phan A, Binder D, Bhatia S, Lennon S et al (2018) Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-cell infiltration. Clin Cancer Res 24(21):5368–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma M, Gentilcore G, Heimersson K, Mozaffari F, Näsman-Glaser B, Young E et al (2017) T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica 102(3):562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N (2021) Implications the role of miR-155 in the pathogenesis of autoimmune diseases. Front Immunol 12:1645

    Article  CAS  Google Scholar 

  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1(1):1–9

    Article  Google Scholar 

  • Perrichet A, Ghiringhelli F, Rébé C (2020) Understanding inflammasomes and PD-1/PD-L1 crosstalk to improve cancer treatment efficiency. Cancers 12(12):3550

    Article  CAS  PubMed Central  Google Scholar 

  • Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z et al (2019) The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol 10:2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu F, Ye J, Pan X, Wang J, Gan S, Chu C et al (2019) MicroRNA-497-5p down-regulation increases PD-L1 expression in clear cell renal cell carcinoma. J Drug Target 27(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK (2016) miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 6(3):235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 7:1327

    PubMed  PubMed Central  Google Scholar 

  • Santos P, Almeida F (2020) Role of exosomal miRNAs and the tumor microenvironment in drug resistance. Cell 9(6):1450

    Article  CAS  Google Scholar 

  • Schickel R, Boyerinas B, Park S, Peter M (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974

    Article  CAS  PubMed  Google Scholar 

  • Seddiki N, Brezar V, Ruffin N, Lévy Y, Swaminathan S (2014) Role of mi R-155 in the regulation of lymphocyte immune function and disease. Immunology 142(1):32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo N, Shirakura Y, Tahara Y, Momose F, Harada N, Ikeda H et al (2018) Activated CD8+ T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun 9(1):1–11

    Article  CAS  Google Scholar 

  • Si W, Shen J, Zheng H, Fan W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 2019;11(1):1–24

    Google Scholar 

  • Su T, Zhang P, Zhao F, Zhang S (2021) Exosomal MicroRNAs mediating crosstalk between cancer cells with cancer-associated fibroblasts and tumor-associated macrophages in the tumor microenvironment. Front Oncol 11:631703

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun F, Guo ZS, Gregory AD, Shapiro SD, **ao G, Qu Z (2020) Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cancer 8(1):e000294

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Katsura A, Matsuyama H, Miyazono K (2015) MicroRNA regulons in tumor microenvironment. Oncogene 34(24):3085–3094

    Article  CAS  PubMed  Google Scholar 

  • Tan S, **a L, Yi P, Han Y, Tang L, Pan Q et al (2020) Exosomal miRNAs in tumor microenvironment. J Exp Clin Cancer Res 39(1):1–15

    Article  CAS  Google Scholar 

  • Tang X, Hou Y, Yang G, Wang X, Tang S, Du Y et al (2016) Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Diff 23(1):132–145

    Article  CAS  Google Scholar 

  • Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER et al (2009) Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A 106(26):10746–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unlu S, Tang S, Wang EN, Martinez I, Tang D, Bianchi ME et al (2012) Damage associated molecular pattern molecule-induced microRNAs (DAMPmiRs) in human peripheral blood mononuclear cells. PLoS One 7(6):e38899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignard V, Labbé M, Marec N, André-Grégoire G, Jouand N, Fonteneau J-F et al (2020) MicroRNAs in tumor exosomes drive immune escape in melanoma. Cancer Immunol Res 8:255–267

    Article  CAS  PubMed  Google Scholar 

  • Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tan LP, Dijkstra MK, van Lom K, Robertus JL, Harms G et al (2008) miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol 215(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf Y, Anderson AC, Kuchroo VK (2020) TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol 20(3):173–185

    Article  CAS  PubMed  Google Scholar 

  • **e F, Zhou X, Fang M, Li H, Su P, Tu Y et al (2019) Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci 6(24):1901779

    Article  CAS  Google Scholar 

  • Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T et al (2016) miR-424 (322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun 7(1):1–13

    Article  Google Scholar 

  • Xu SJ, Hu HT, Li HL, Chang S (2019) The role of miRNAs in immune cell development, immune cell activation, and tumor immunity: with a focus on macrophages and natural killer cells. Cell 8(10):1140

    Article  CAS  Google Scholar 

  • Yang J-S, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43(6):892–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang N, Zhu S, Lv X, Qiao Y, Liu Y-J, Chen J (2018) MicroRNAs: pleiotropic regulators in the tumor microenvironment. Front Immunol 9:2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J et al (2019) Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res 38(1):1–20

    Article  Google Scholar 

  • Yoshii S, Hayashi Y, Iijima H, Inoue T, Kimura K, Sakatani A et al (2019) Exosomal micro RNA s derived from colon cancer cells promote tumor progression by suppressing fibroblast TP 53 expression. Cancer Sci 110(8):2396–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang Z (2020) The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 17(8):807–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y et al (2013) miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 15(3):284–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tanno T, Kanellopoulou C (2019) Cancer therapeutic implications of microRNAs in the regulation of immune checkpoint blockade. ExRNA 1(1):1–6

    Article  Google Scholar 

  • Zheng B, ** Z, Liu R, Yin W, Sui Z, Ren B et al (2018) The function of microRNAs in B-cell development, lymphoma, and their potential in clinical practice. Front Immunol 9:936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, Sun S, Shi J, Cao F, Han X, Chen Z (2017) MicroRNA-125a-5p plays a role as a tumor suppressor in lung carcinoma cells by directly targeting STAT3. Tumor Biol 39(6):1010428317697579

    Article  CAS  Google Scholar 

  • Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y et al (2016) miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 63(5):1560–1575

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Li X, Wu X, Zhang T, Zhu Q, Wang X et al (2018) Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res 6(12):1578–1592

    Article  CAS  PubMed  Google Scholar 

  • zur Hausen H (2008) The role of microRNAs in human cancer. Wiley Online Library

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, S., Prasad, D. (2022). MicroRNAs Targeting Tumor Microenvironment and Immune Modulation. In: Prasad, D., Santosh Sushma, P. (eds) Role of MicroRNAs in Cancers. Springer, Singapore. https://doi.org/10.1007/978-981-16-9186-7_6

Download citation

Publish with us

Policies and ethics

Navigation