An Introduction to Photovoltaic Applications from Organic Material and Fabrication Perspective

  • Chapter
  • First Online:
Contemporary Trends in Semiconductor Devices

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 850))

  • 693 Accesses

Abstract

The demand for the renewable energy sources is increasing in today’s era due to limited supply of nuclear energy sources and their hazardous effects that is a prominent reason of rising greenhouse effect. Therefore, different solar cells are gaining importance among which, one specific the organic photovoltaic cells are gaining interest as they are environment friendly as well as economical for both developed and develo** world. Although organic solar cells are achieving appreciable performance, there are challenges associated with organic photovoltaics such as low efficiency, less stability, and less strength as compared to silicon solar cells. However, utilization of conjugated polymers (CP) in the active layer of the photovoltaic device can lead to improvement in the organic photovoltaic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3(1):1–14. https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  2. Zou C, Zhao Q, Zhang G, **ong B (2016) Energy revolution: from a fossil energy era to a new energy era. Nat Gas Ind 36(1):1–10. https://doi.org/10.3787/j.issn.1000-0976.2016.01.001

    Article  Google Scholar 

  3. Fischer M, López-Duarte I, Wienk M (2009) Functionalized dendritic oligothiophenes: ruthenium phthalocyanine complexes and their {…}. J Am Chem Soc 13:8669–8676. https://doi.org/10.1039/b904243a.VOL

    Article  Google Scholar 

  4. Sharma N, Gupta SK, Singh Negi CM (2019) Influence of active layer thickness on photovoltaic performance of PTB7:PC70BM bulk heterojunction solar cell. Superlattices Microstruct 135(September):106278. https://doi.org/10.1016/j.spmi.2019.106278

    Article  Google Scholar 

  5. Sorrell S (2015) Reducing energy demand: a review of issues, challenges and approaches. Renew Sustain Energy Rev 47:74–82. https://doi.org/10.1016/j.rser.2015.03.002

    Article  Google Scholar 

  6. Zoombelt AP, Fonrodona M, Wienk MM, Sieval AB, Hummelen JC, Janssen RAJ (2009) Photovoltaic performance of an ultrasmall band gap polymer. Org Lett 11(4):903–906. https://doi.org/10.1021/ol802839z

    Article  Google Scholar 

  7. Shao Y, **ao Z, Bi C, Yuan Y, Huang J (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. 1–7. https://doi.org/10.1038/ncomms6784

  8. Karg S, Riess W, Meier M, Schwoerer M (1993) Electrical and optical characterization of light emitting poly-phenylene-vinylene diodes. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 236(1):79–86. https://doi.org/10.1080/10587259308055212

    Article  Google Scholar 

  9. Halls JJM, Friend RH, Road M (1997) oy ‘ I. 85:1307–1308

    Google Scholar 

  10. Abbasi SA, Abbasi N (2000) The likely adverse environmental impacts of renewable energy sources. Appl Energy 65(1–4):121–144. https://doi.org/10.1016/S0306-2619(99)00077-X

    Article  Google Scholar 

  11. Zhang YHP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci Eng 1(1):27–41. https://doi.org/10.1002/ese3.2

    Article  Google Scholar 

  12. Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H (2011) A review on global solar energy policy. Renew Sustain Energy Rev 15(4):2149–2163. https://doi.org/10.1016/j.rser.2011.01.007

    Article  Google Scholar 

  13. Grübler A, Nakićenović N, Victor DG (1999) Dynamics of energy technologies and global change. Energy Policy 27(5):247–280. https://doi.org/10.1016/S0301-4215(98)00067-6

    Article  Google Scholar 

  14. Wilson GM, Al-Jassim M, Metzger WK, Glunz SW, Verlinden P, **ong G, Mansfield LM, Stanbery BJ, Zhu K, Yan Y, Berry JJ, Ptak AJ, Dimroth F, Kayes BM, Tamboli AC, Peibst R, Catchpole K, Reese MO, Klinga CS, Denholm P, Morjaria M, Deceglie MG, Freeman JM, Mikofski MA, Jordan DC, Tamizhmani G, Sulas-Kern DB (2020) The 2020 photovoltaic technologies roadmap. J Phys D Appl Phys 53(49). https://doi.org/10.1088/1361-6463/ab9c6a

  15. Uqaili MA, Harijan K (2012) Energy, environment and sustainable development. Energy, Environ Sustain Dev 12:1–349. https://doi.org/10.1007/978-3-7091-0109-4

    Article  Google Scholar 

  16. Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2013) Beyond 11% effi ciency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4Solar Cells. Adv Energy Mater 3(1):34–38. https://doi.org/10.1002/aenm.201200348

    Article  Google Scholar 

  17. Baxter JB, Aydil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells 90(5):607–622. https://doi.org/10.1016/j.solmat.2005.05.010

    Article  Google Scholar 

  18. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ (2013) Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4:1–6. https://doi.org/10.1038/ncomms3761

    Article  Google Scholar 

  19. Liang PW, Chueh CC, Williams ST, Jen AKY (2015) Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv Energy Mater 5(10):1–7. https://doi.org/10.1002/aenm.201402321

    Article  Google Scholar 

  20. Yasuda T, Sakamoto K, Miki K (2017) Effects of neat C 60 do** on the performance of bulk-heterojunction solar cells based on P3HT:PCBM. Mol Cryst Liq Cryst 653(1):125–130. https://doi.org/10.1080/15421406.2017.1350043

    Article  Google Scholar 

  21. Singh RP, Kushwaha OS (2013) Polymer solar cells: an overview. 128–149. https://doi.org/10.1002/masy.201350516

  22. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412. https://doi.org/10.1016/j.solmat.2008.10.004

    Article  Google Scholar 

  23. Machui F, Hösel M, Li N, Spyropoulos GD, Ameri T, Søndergaard RR, Jørgensen M, Scheel A, Gaiser D, Kreul K, Lenssen D, Legros M, Lemaitre N, Vilkman M, Välimäki M, Nordman S, Brabec CJ, Krebs FC (2014) Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture. Energy Environ

    Google Scholar 

  24. Jeong YJ, Woo S, Kim Y, Jeong SJ, Han YS, Lee DK, Ko JII, Jung SK, An BC (2011) Effects of solvents on ITO cracks in ultrasonic cleaning of ITO-coated flexible substrates for polymer solar cells. Mol Cryst Liq Cryst 551:212–220. https://doi.org/10.1080/15421406.2011.600655

    Article  Google Scholar 

  25. Zhang Q, Ruan C, **a G, Gong H, Wang S (2021) Low-temperature solution-processed InGaZnO thin film transistors by using lightwave-derived annealing. Thin Solid Films 723(September 2020):138594. https://doi.org/10.1016/j.tsf.2021.138594

    Article  Google Scholar 

  26. Corzo D, Tostado-Blázquez G, Baran D (2020) Flexible electronics: status: challenges and opportunities. Front Electron 1(September):1–13. https://doi.org/10.3389/felec.2020.594003

    Article  Google Scholar 

  27. Angmo D, Krebs FC (2015) Over 2years of outdoor operational and storage stability of ITO-free, fully roll-to-roll fabricated polymer Solar Cell Modules. Energy Technol 3(7):774–783. https://doi.org/10.1002/ente.201500086

    Article  Google Scholar 

  28. Chen YC, Chang WH, Chang Y, Huang CM, Sung HW (2004) A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute. Biotechnol Bioeng 87(1):34–42. https://doi.org/10.1002/bit.20078

    Article  Google Scholar 

  29. Coropceanu V, Li H, Winget P, Zhu L, Brédas J-L (2013) Electronic-structure theory of organic semiconductors: charge-transport parameters and metal/organic interfaces. Annu Rev Mater Res 43(1):63–87. https://doi.org/10.1146/annurev-matsci-071312-121630

    Article  Google Scholar 

  30. Koehler A, Baessler H (2015) The electronic structure of organic semiconductors. Electron Process Org Semicond i:1–86. https://doi.org/10.1002/9783527685172.ch1

    Article  Google Scholar 

  31. Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells. J Appl Phys 90(7):3632–3641. https://doi.org/10.1063/1.1394920

    Article  Google Scholar 

  32. Günes S, Sariciftci NS (2017) Organic and inorganic hybrid solar cells

    Google Scholar 

  33. Frankevich EL, Lymarev AA, Sokolik I, Karasz FE, Blumstengel S, Baughman RH, Hörhold HH (1992) Polaron-pair generation in poly(phenylene vinylenes). Phys Rev B 46(15):9320–9324. https://doi.org/10.1103/PhysRevB.46.9320

    Article  Google Scholar 

  34. Shoaee S (2012) Charge photogeneration in donor/acceptor organic solar cells. J Photonics Energy 2(1):021001. https://doi.org/10.1117/1.JPE.2.021001

    Article  Google Scholar 

  35. He M, Chen Y, Liu H, Wang J, Fang X, Liang Z (2015) Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. Chem Commun 51(47):9659–9661. https://doi.org/10.1039/c5cc02282g

    Article  Google Scholar 

  36. Huang JH, Li KC, Kekuda D, Padhy HH, Lin HC, Ho KC, Chu CW (2010) Efficient bilayer polymer solar cells possessing planar mixed-heterojunction structures. J Mater Chem 20(16):3295–3300. https://doi.org/10.1039/b924147g

    Article  Google Scholar 

  37. Sharma N, Mohan C, Negi S, Verma AS, Gupta SK (2018) C60 Concentration Influence on MEH-PPV: C60 Bulk Heterojunction-Based Schottky Devices. 47(12):7023–7033. https://doi.org/10.1007/s11664-018-6629-3

  38. Sharma N, Singh Negi CM, Sharma M, SinghVerma A, Gupta SK (2019) A comparative analysis of the optoelectronic performance of conventional and inverted design organic photodetectors. Opt Mater (Amst) 95(July):109273. https://doi.org/10.1016/j.optmat.2019.109273

    Article  Google Scholar 

  39. Facchetti A (2013) Polymer donor-polymer acceptor (all-polymer) solar cells. Mater Today 16(4):123–132. https://doi.org/10.1016/j.mattod.2013.04.005

  40. Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512. https://doi.org/10.1039/b921624c

    Article  Google Scholar 

  41. Alemu D, Wei HY, Ho KC, Chu CW (2012) Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5(11):9662–9671. https://doi.org/10.1039/c2ee22595f

    Article  Google Scholar 

  42. Tsai K-H, Huang J-S, Liu M-Y, Chao C-H, Lee C-Y, Hung S-C, Lin C-F (2009) High efficiency flexible polymer solar cells based on PET substrates with a nonannealing active layer. J Electrochem Soc 156(10):B1188. https://doi.org/10.1149/1.3184341

    Article  Google Scholar 

  43. Jalali B, Paniccia M, Reed G, Fathpour S (2006) Silicon photonics. J Light Technol 24(June):58–68. https://doi.org/10.1109/JLT.2006.885782

    Article  Google Scholar 

  44. Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R, Fromherz T, Mueller T (2013) CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photonics 7(11):892–896. https://doi.org/10.1038/nphoton.2013.240

    Article  Google Scholar 

  45. Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H (2020) Recent advances in solution-processed photodetectors based on inorganic and hybrid photo-active materials. Nanoscale 12(4):2201–2227. https://doi.org/10.1039/c9nr07799e

    Article  Google Scholar 

  46. Lim BT, Kang I, Kim CM, Kim SY, Kwon SK, Kim YH, Chung DS (2014) Solution-processed high-performance photodetector based on a new triisopropylsilylethynyl anthracene derivative. Org Electron Phys Mater Appl 15(8):1856–1861. https://doi.org/10.1016/j.orgel.2014.04.017

    Article  Google Scholar 

  47. Borchardt JK (2004) Developments in organic displays. Mater Today 7(9):42–46. https://doi.org/10.1016/S1369-7021(04)00401-8

    Article  Google Scholar 

  48. Jung GY, Yates A, Samuel IDW, Petty MC (2001) Lifetime studies of light-emitting diode structures incorporating polymeric Langmuir—Blodgett films. Current 1–10. https://doi.org/10.1016/S0928-4931(01)00202-8

  49. Phuse S (2017) Influence of extraction methods using different solvents on caesalpinia pulcherrima leaves. Influence of Extraction Methods Using Different Solvents. https://doi.org/10.22376/ijpbs.2017.8.2.b829-837

  50. R HY, S JA, B ML, S KS, Prmod B (2017) Application of magnetic stirrer for influencing extraction method on tectona grandis as analgesic activity application of magnetic stirrer for influencing extraction method on tectona grandis as analgesic activity. https://doi.org/10.13140/RG.2.2.23134.74561

  51. Yimsiri P, MacKley MR (2006) Spin and dip coating of light-emitting polymer solutions: matching experiment with modelling. Chem Eng Sci 61(11):3496–3505. https://doi.org/10.1016/j.ces.2005.12.018

    Article  Google Scholar 

  52. Tyona MD (2013) A theoritical study on spin coating technique. Adv Mater Res 2(4):195–208. https://doi.org/10.12989/amr.2013.2.4.195

  53. Cox ME, Mangels JI (1976) Improved chamber for the isolation of anaerobic microorganisms 4(1):40–45

    Google Scholar 

  54. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868. https://doi.org/10.1038/nmat1500

    Article  Google Scholar 

  55. Azeri Ö, Aktas E, Istanbulluoglu C, Hacioglu SO, Cevher SC, Toppare L, Cirpan A (2017) Efficient benzodithiophene and thienopyrroledione containing random polymers as components for organic solar cells. Polymer (Guildf) 133:60–67. https://doi.org/10.1016/j.polymer.2017.11.024

    Article  Google Scholar 

  56. Ma Z, Wang E, Jarvid ME, Henriksson P, Inganäs O, Zhang F, Andersson MR (2012) Synthesis and characterization of benzodithiophene-isoindigo polymers for solar cells. J Mater Chem 22(5):2306–2314. https://doi.org/10.1039/c1jm14940g

    Article  Google Scholar 

  57. Sharma N, Gupta SK, Negi CMS (2020) New insights into the impact of graphene oxide incorporation on molecular ordering and photophysical properties of PTB7:C70 blends. J Mater Sci Mater Electron 31(24):22274–22283. https://doi.org/10.1007/s10854-020-04728-2

    Article  Google Scholar 

  58. Sariciftci NS, Smilowitz L, Heeger AJ, Wudi F (1988) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Mohan Singh Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, N., Kharkwal, D., Gupta, S.K., Negi, C.M.S. (2022). An Introduction to Photovoltaic Applications from Organic Material and Fabrication Perspective. In: Goswami, R., Saha, R. (eds) Contemporary Trends in Semiconductor Devices. Lecture Notes in Electrical Engineering, vol 850. Springer, Singapore. https://doi.org/10.1007/978-981-16-9124-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9124-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9123-2

  • Online ISBN: 978-981-16-9124-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation