Merging Carbon Nanostructures with Porphyrins

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

In this contribution, we highlight the most important work in the field of photon and charge management, focusing on electron donor-acceptor conjugates and/or systems built around porphyrins, on the one hand, and 0D, 1D, and 2D nanocarbons, on the other hand. Photons in these conjugates/systems are managed by the porphyrins, while the 0D, 1D, and 2D nanocarbons serve as the electro-active component, which allow the charges to be managed. Going beyond the highlighted examples with the characterization of photon and charge management, we emphasize photovoltaics and photocatalysis to convert and store energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 588.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 534.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deisenhofer J, Norris JR (1993) The photosynthetic reaction center, 1st edn. Academic, San Diego

    Google Scholar 

  2. Collings AF, Critchley C (2005) Artificial photosynthesis: from basic biology to industrial application. Wiley-VCH, Weinheim

    Google Scholar 

  3. Balzani V (2001) Electron transfer in chemistry, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  4. Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92:435–461

    CAS  Google Scholar 

  5. Gust D, Moore TA, Moore AL et al (1993) Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26:198–205

    CAS  Google Scholar 

  6. Mattes SL, Farid S et al (1984) Exciplexes and electron transfer reactions. Science 226:917–921

    CAS  PubMed  Google Scholar 

  7. Roth HD (1990) In: Mattay J (ed) A brief history of photoinduced electron transfer and related reactions in photoinduced electron transfer, vol 156. Springer, Berlin, p 1

    Google Scholar 

  8. Marcus RA (1993) Electron transfer reactions in chemistry: theory and experiment. Angew Chem Int Ed 32:1111–1121

    Google Scholar 

  9. Kroto HW, Allaf AW, Balm SP et al (1991) C60: buckminsterfullerene. Chem Rev 91:1213–1235. https://doi.org/10.1021/cr00006a005

    Article  CAS  Google Scholar 

  10. Bracher PJ, Schuster DI (2002) Electron transfer in functionalized fullerenes. In: Guldi DM, Martin N (eds) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic Publishers, Dordrecht, pp 163–212

    Google Scholar 

  11. Guldi DM (1997) Electron transfer to buckminsterfullerenes and functionalized fullerene derivatives in aqueous and protic media, as studied by radiolytic techniques. Res Chem Intermed 23:653–673

    CAS  Google Scholar 

  12. Popov AA, Yang S, Dunsch L et al (2013) Endohedral fullerenes. Chem Rev 113:5989–6113

    CAS  PubMed  Google Scholar 

  13. Prato M (1997) [60]Fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109

    CAS  Google Scholar 

  14. Rudolf M, Kirner SV, Guldi DM et al (2016) A multicomponent molecular approach to artificial photosynthesis-the role of fullerenes and endohedral metallofullerenes. Chem Soc Rev 45:612–630

    CAS  PubMed  Google Scholar 

  15. Scott LT (2004) Methods for the chemical synthesis of fullerenes. Angew Chem Int Ed 43:4994–5007

    CAS  Google Scholar 

  16. Akasaka T, Nagase S (2002) Endofullerenes: A new family of carbon clusters, 1st edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  17. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties and applications, 1st edn. Springer-Verlag, Berlin

    Google Scholar 

  18. Lim SYY, Shen W, Gao Z et al (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    CAS  PubMed  Google Scholar 

  19. Strauss V, Roth A, Sekita M, Guldi DM et al (2016) Efficient energy-conversion materials for the future: understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1:531–556

    CAS  Google Scholar 

  20. Cadranel A, Margraf JT, Strauss V, Clark T, Guldi DM et al (2019) Carbon nanodots for charge-transfer processes. Acc Chem Res 52:955–963

    CAS  PubMed  Google Scholar 

  21. Ogunro OO, Wang XQ et al (2010) Charge transfer in the non-covalent functionalization of carbon nanotubes. New J Chem 34:1084–1088

    CAS  Google Scholar 

  22. Meng L, Fu C, Lu Q et al (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci 19:801–810

    CAS  Google Scholar 

  23. Strauss V, Margraf JT, Dirian K, Syrgiannis Z, Prato M, Wessendorf C, Hirsch A, Clark T, Guldi DM et al (2015) Carbon nanodots: supramolecular electron donor-acceptor hybrids featuring perylenediimides. Angew Chem Int Ed 54:8292–8297

    CAS  Google Scholar 

  24. **ao L, Sun H et al (2018) Novel properties and applications of carbon nanodots. Nanoscale Horiz 3:565–597

    CAS  PubMed  Google Scholar 

  25. Ferrer-Ruiz A, Scharl T, Haines P, Rodriguez-Perez L, Cadranel A, Herranz MA, Guldi DM, Martin N et al (2018) Exploring tetrathiafulvalene-carbon nanodots conjugates in charge transfer reactions. Angew Chem Int Ed 57:1001–1005

    CAS  Google Scholar 

  26. Cacioppo M, Scharl T, Dordevic L, Cadranel A, Arcudi F, Guldi DM, Prato M et al (2020) Symmetry-breaking charge-transfer chromophore interactions supported by carbon nanodots. Angew Chem Int Ed 132:12879–12884

    Google Scholar 

  27. Strauss V, Margraf JT, Clark T, Guldi DM et al (2015) A carbon-carbon hybrid-immobilizing carbon nanodots onto carbon nanotubes. Chem Sci 6:6878–6885

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Strauss V, Margraf JT, Dolle C, Butz B, Nacken TJ, Walter J, Bauer W, Peukert W, Spiecker E, Clark T, Guldi DM et al (2014) Carbon nanodots: toward a comprehensive understanding of their photoluminescence. J Am Chem Soc 136:17308–17316

    CAS  PubMed  Google Scholar 

  29. Menon A, Slominskii YL, Joseph J, Dimitriev OP, Guldi DM et al (2020) Reversible charge transfer with single-walled carbon nanotubes upon harvesting the low energy part of the solar spectrum. Small 16:1906745

    CAS  Google Scholar 

  30. Sgobba V, Guldi DM et al (2009) Carbon nanotubes – electronic/electrochemical properties and application for nanoelectronics and photonics. Chem Soc Rev 38:165–184

    CAS  PubMed  Google Scholar 

  31. Menon A, Papadopoulos I, Harreiß C, Mora-Fuentes JP, Cortizo-Lacalle D, Mateo-Alonso A, Spiecke E, Guldi DM et al (2020) Collecting up to 115% of singlet-fission products by single walled carbon nanotubes. ACS Nano 14:8875–8886

    CAS  PubMed  Google Scholar 

  32. Dyke CA, Tour JM et al (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Am Chem Soc 108:11151–11159

    CAS  Google Scholar 

  33. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871

    CAS  PubMed  Google Scholar 

  34. Yap SHK, Chan KK, T** SC, Yong KT et al (2020) Carbon allotrope-based optical fibers for environmental and biological sensing: a review. Sensors (Basel) 20:2046

    CAS  Google Scholar 

  35. Li H, Kang Z, Liu Y, Lee ST et al (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253

    CAS  Google Scholar 

  36. Li Z, Wang L, Li Y, Feng Y, Feng W et al (2019) Frontiers in carbon dots: design, properties and applications. Mater Chem Front 3:2571–2601

    CAS  Google Scholar 

  37. Liu ML, Chen BB, Li CM, Huang CZ et al (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471

    CAS  Google Scholar 

  38. Carbonaro CM, Corpino R, Salis M, Mocci F, Thakkar SV, Olla C, Ricci PC et al (2019) On the emission properties of carbon dots: reviewing data and discussing models. C 5:60

    CAS  Google Scholar 

  39. Sciortino A, Cannizzo A, Messina F et al (2018) Carbon nanodots: a review-from the current understanding of the fundamental photophysics to the full control of the optical response. C 4:67

    CAS  Google Scholar 

  40. De B, Karak N et al (2017) Recent progress in carbon dot-metal based nanohybrids for photochemical and electrochemical applications. J Mater Chem A 5:1826–1859

    CAS  Google Scholar 

  41. Yu H, Shi R, Zhao Y, Waterhouse GIN, Wu LZ, Tung CH, Zhang T et al (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28:9454–9477

    CAS  PubMed  Google Scholar 

  42. Arcudi F, Strauss V, Dordevic L, Cadranel A, Guldi DM, Prato M et al (2017) Porphyrin antennas on carbon nanodots: excited state energy and electron transduction. Angew Chem Int Ed 56:12097–12101

    CAS  Google Scholar 

  43. Cadranel A, Strauss V, Margraf JT, Winterfeld KA, Vogl C, Đorđevic L, Arcudi F, Hoelzel H, Jux N, Prato M, Guldi DM et al (2018) Screening supramolecular interactions between carbon nanodots and porphyrins. J Am Chem Soc 140:904–907

    CAS  PubMed  Google Scholar 

  44. Kroto HW, Heath JR, Brien SC, Curl RF, Smalley RE et al (1985) C60: buckminster fullerene. Nature 318:1985–1986

    Google Scholar 

  45. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531

    CAS  Google Scholar 

  46. Hirsch A, Chen Z, Jiao H et al (2000) Spherical aromaticity in Ih symmetrical fullerenes. Angew Chem Int Ed 39:3915–3917

    CAS  Google Scholar 

  47. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR et al (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Google Scholar 

  48. Guldi DM, Fukuzumi S (2002) The small reorganization energy of fullerenes. In: Guldi DM, Martin N (eds) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic Publishers, pp 237–265

    Google Scholar 

  49. Gust D, Moore TA, Moore AL et al (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48

    CAS  PubMed  Google Scholar 

  50. Lin VS, DiMagno SG, Therien MJ et al (1994) Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems. Science 264:1105–1111

    CAS  PubMed  Google Scholar 

  51. Nappa M, Valentine JS et al (1978) The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc. J Am Chem Soc 100:5075–5080

    CAS  Google Scholar 

  52. Goldberg PK, Pundsack TJ, Splan KE et al (2011) Photophysical investigation of neutral and diprotonated free-base bis(arylethynyl)porphyrins. J Phys Chem A 115:10452–10460

    CAS  PubMed  Google Scholar 

  53. Kuo MC, Li LA, Yen WN, Lo SS, Lee CW, Yeh CY et al (2007) New synthesis of zinc tetrakis(arylethynyl)porphyrins and substituent effects on their redox chemistry. Dalt Trans 14:1433–1439

    Google Scholar 

  54. Imahori H (2004) Porphyrin – fullerene linked systems as artificial photosynthetic mimics. Org Biomol Chem 2:1425–1433

    CAS  PubMed  Google Scholar 

  55. Gust D, Moore TA et al (1997) Fullerenes pigments linked to pigments. Res Chem Intermed 23:621–651

    CAS  Google Scholar 

  56. Imahori H, Hagiwara K, Akiyama T, Aoki M, Taniguchi S, Okada T, Shirakawa M, Sakata Y et al (1996) The small reorganization energy of C60 in electron transfer. Chem Phys Lett 263:545–550

    CAS  Google Scholar 

  57. Bracher PJ, Schuster DI et al (2002) Electron transfer in functionalized fullerenes, pp 163–212

    Google Scholar 

  58. Lawson DR, Feldheim DL, Foss CA, Dorhout PK, Elliott CM, Martin CR, Parkinson B et al (1992) Near-IR absorption spectra for the buckminsterfullerene anions: an experimental and theoretical study. J Electrochem Soc 139:L68–L71

    CAS  Google Scholar 

  59. Lawson DR, Feldheim DL, Foss CA, Dorhout PK, Elliott CM, Martin CR, Parkinson B et al (1992) Near-IR absorption spectra for the C70 fullerene anions. J Phys Chem 96:7175–7177

    CAS  Google Scholar 

  60. Kuciauskas D, Lin S, Seely GR, Moore AL, Moore TA, Gust D, Drovetskaya T, Reed CA, Boyd PDW et al (1996) Energy and photoinduced electron transfer in porphyrin-fullerene dyads. J Phys Chem 100:15926–15932

    CAS  Google Scholar 

  61. Liddell PA, Sumida JP, Macpherson AN, Noss L, Seely GR, Clark KN, Moore AL, Moore TA, Gust D et al (1994) Preparation and photophysical studies of porphyrin-C60 dyads. Photochem Photobiol 60:537–541

    CAS  Google Scholar 

  62. Guldi DM, Luo C, Prato M, Dietel E, Hirsch A et al (2000) Charge-transfer in a π-stacked fullerene porphyrin dyad: evidence for back electron transfer in the “Marcus-inverted” region. Chem Commun 5:373–374

    Google Scholar 

  63. Sutton LR, Scheloske M, Pirner KS, Hirsch A, Guldi DM, Gisselbrecht J-P et al (2004) Unexpected change in charge transfer behavior in a cobalt(II) porphyrin−fullerene conjugate that stabilizes radical ion pair states. J Am Chem Soc 126:10370–10381

    CAS  PubMed  Google Scholar 

  64. Imahori H, Hagiwara K, Akiyama T, Taniguchi S, Okada T, Sakata Y et al (1995) Synthesis and photophysical property of porphyrin-linked fullerene. Chem Lett 24:265–266

    Google Scholar 

  65. Imahori H, Hagiwara K, Aoki M, Akiyama T, Taniguchi S, Okada T, Shirakawa M, Sakata Y et al (1996) Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin-C60 dyads. J Am Chem Soc 118:11771–11782

    CAS  Google Scholar 

  66. Imahori H, El-Khouly ME, Fujitsuka M, Ito O, Sakata Y, Fukuzumi S et al (2001) Solvent dependence of charge separation and charge recombination rates in porphyrin-fullerene dyad. J Phys Chem A 105:325–332

    CAS  Google Scholar 

  67. Imahori H, Tamaki K, Guldi DM, Luo C, Fujitsuka M, Ito O, Sakata Y, Fukuzumi S et al (2001) Modulating charge separation and charge recombination dynamics in porphyrin – fullerene linked dyads and triads: marcus-normal versus inverted region. J Am Chem Soc 123:2607–2617

    CAS  PubMed  Google Scholar 

  68. Imahori H, Yamada H, Guldi DM, Endo Y, Shimomura A, Kundu S, Yamada K, Okada T, Sakata Y, Fukuzumi S et al (2002) Comparison of reorganization energies for intra- and intermolecular electron transfer. Angew Chem Int Ed 41:2344–2347

    CAS  Google Scholar 

  69. Guldi DM (2002) Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31:22–36

    CAS  PubMed  Google Scholar 

  70. Kuciauskas D, Liddell PA, Lin S, Johnson TE, Weghorn SJ, Lindsey JS, Moore AL, Moore TA, Gust D et al (1999) An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 121:8604–8614

    CAS  Google Scholar 

  71. Luo C, Guldi DM, Imahori H, Tamaki K, Sakata Y et al (2000) Sequential energy and electron transfer in an artificial reaction center: formation of a long-lived charge-separated state. J Am Chem Soc 122:6535–6551

    CAS  Google Scholar 

  72. Imahori H, Guldi DM, Tamaki K, Yoshida Y, Luo C, Sakata Y, Fukuzumi S et al (2001) Charge separation in a novel artificial photosynthetic reaction center lives 380 ms. J Am Chem Soc 123:6617–6628

    CAS  PubMed  Google Scholar 

  73. Gilbert M, Albinsson B et al (2015) Photoinduced charge and energy transfer in molecular wires. Chem Soc Rev 44:845–862

    CAS  PubMed  Google Scholar 

  74. Schubert C, Margraf JT, Clark T, Guldi DM et al (2015) Molecular wires – impact of π-conjugation and implementation of molecular bottlenecks. Chem Soc Rev 44:988–998

    CAS  PubMed  Google Scholar 

  75. de la Torre G, Giacalone F, Segura JL, Martín N, Guldi DM et al (2005) Electronic communication through π-conjugated wires in covalently linked porphyrin/C60 ensembles. Chem Eur J 11:1267–1280

    PubMed  Google Scholar 

  76. Sukegawa J, Schubert C, Zhu X, Tsuji H, Guldi DM, Nakamura E et al (2014) Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling. Nat Chem 6:899–905

    CAS  PubMed  Google Scholar 

  77. Yzambart G, Zieleniewska A, Bauroth S, Clark T, Bryce MR, Guldi DM et al (2017) Charge-gating dibenzothiophene – S, S – dioxide bridges in electron donor − bridge − acceptor conjugates. J Phys Chem C 121:13557–13569

    CAS  Google Scholar 

  78. Kaur R, Possanza F, Limosani F, Bauroth S, Zanoni R, Clark T, Arrigoni G, Tagliatesta P, Guldi DM et al (2020) Understanding and controlling short- and long-range electron/charge-transfer processes in electron donor-acceptor conjugates. J Am Chem Soc 142:7898–7911

    CAS  PubMed  Google Scholar 

  79. Zieleniewska A, Lodermeyer F, Roth A, Guldi DM et al (2018) Fullerenes-how 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem Soc Rev 47:702–714

    CAS  PubMed  Google Scholar 

  80. Boyd PDW, Reed CA et al (2005) Fullerene−porphyrin constructs. Acc Chem Res 38:235–242

    CAS  PubMed  Google Scholar 

  81. Sun D, Tham FS, Reed CA, Chaker L, Boyd PDW et al (2002) Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J Am Chem Soc 124:6604–6612

    CAS  PubMed  Google Scholar 

  82. Tashiro K, Aida T, Zheng JY, Kinbara K, Saigo K, Sakamoto S, Yamaguchi K et al (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J Am Chem Soc 121:9477–9478

    CAS  Google Scholar 

  83. Da Ros T, Prato M, Guldi DM, Ruzzi M, Pasimeni L et al (2001) Efficient charge separation in porphyrin-fullerene-ligand complexes. Chem A Eur J 7:816–827

    Google Scholar 

  84. D’Souza F, Deviprasad GR, El-Khouly ME, Fujitsuka M, Ito O et al (2001) Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: “tail-on” and “tail-off” binding approach. J Am Chem Soc 123:5277–5284

    PubMed  Google Scholar 

  85. D’Souza F, Amin AN, El-Khouly ME, Subbaiyan NK, Zandler ME, Fukuzumi S et al (2012) Control over photoinduced energy and electron transfer in supramolecular polyads of covalently linked azaBODIPY-bisporphyrin “molecular clip” hosting fullerene. J Am Chem Soc 134:654–664

    PubMed  Google Scholar 

  86. Wessendorf F, Gnichwitz J-F, Sarova GH, Hager K, Hartnagel U, Guldi DM, Hirsch A et al (2007) Implementation of a hamiliton-receptor-based hydrogen-bonding motif toward a new electron donor−acceptor prototype: electron versus energy transfer. J Am Chem Soc 129:16057–16071

    CAS  PubMed  Google Scholar 

  87. Calderon RMK, Valero J, Grimm B, De Mendoza J, Guldi DM et al (2014) Enhancing molecular recognition in electron donor-acceptor hybrids via cooperativity. J Am Chem Soc 136:11436–11443

    CAS  PubMed  Google Scholar 

  88. Vela S, Bauroth S, Atienza C, Molina-Ontoria A, Guldi DM, Martín N et al (2016) Determining the attenuation factor in molecular wires featuring covalent and noncovalent Tectons. Angew Chem 128:15300–15304

    Google Scholar 

  89. Wang B, Bauroth S, Saha A, Chen M, Clark T, Lu X, Guldi DM et al (2019) Tuning electron transfer in supramolecular nano-architectures made of fullerenes and porphyrins. Nanoscale 11:10782–10790

    CAS  PubMed  Google Scholar 

  90. Leonhardt EJ, Jasti R et al (2019) Emerging applications of carbon nanohoops. Nat Rev Chem 3:672–686

    CAS  Google Scholar 

  91. Xu Y, Wang B, Kaur R, Minameyer MB, Bothe M, Drewello T, Guldi DM, von Delius M et al (2018) A supramolecular [10]CPP junction enables efficient electron transfer in modular porphyrin–[10]CPP⊃fullerene complexes. Angew Chem Int Ed 57:11549–11553

    CAS  Google Scholar 

  92. Yamada M, Akasaka T, Nagase S et al (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43:92–102

    CAS  PubMed  Google Scholar 

  93. Guldi DM, Feng L, Radhakrishnan SG, Nikawa H, Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S, Herranz MA, Martín N et al (2010) A molecular Ce2@Ih-C80 switch – unprecedented oxidative pathway in photoinduced charge transfer reactivity. J Am Chem Soc 132:9078–9086

    CAS  PubMed  Google Scholar 

  94. Rudolf M, Feng L, Slanina Z, Wang W, Nagase S, Akasaka T, Guldi DM et al (2016) Strong electronic coupling and electron transfer in a Ce2@Ih-C80–H2P electron donor acceptor conjugate. Nanoscale 8:13257–13262

    CAS  PubMed  Google Scholar 

  95. Feng L, Radhakrishnan SG, Mizorogi N, Slanina Z, Nikawa H, Tsuchiya T, Akaksaka T, Nagase S, Martín N, Guldi DM et al (2011) Synthesis and charge-transfer chemistry of La2@Ih-C80/Sc3N@Ih-C80−zinc porphyrin conjugates: impact of endohedral cluster. J Am Chem Soc 133:7608–7618

    CAS  PubMed  Google Scholar 

  96. Wolfrum S, Pinzon JR, Molina-Ontario A, Gouloumis A, Martín N, Echegoyen L, Guldi DM et al (2011) Utilization of Sc3N@C80 in long-range charge transfer reactions. Chem Commun 47:2270–2272

    CAS  Google Scholar 

  97. Tsuchiya T, Rudolf M, Wolfrum S, Radhakrishnan SG, Aoyama R, Yokosawa Y, Oshima A, Akasaka T, Nagase S, Guldi DM et al (2013) Coordinative interactions between porphyrins and C60, La@C82, and La2@C80. Chem A Eur J 19:558–565

    CAS  Google Scholar 

  98. Langa F, Gomez-Escalonilla MJ, de la Cruz P et al (2007) Carbon nanotubes and porphyrins: an exciting combination for optoelectronic devices. J Porphyrins Phthalocyanines 11:348–358

    CAS  Google Scholar 

  99. Wang A, Ye J, Humphrey MG, Zhang C et al (2018) Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv Mater 30:1705704

    Google Scholar 

  100. Baskaran D, Mays JW, Zhang XP, Bratcher MS et al (2005) Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J Am Chem Soc 127:6916–6917

    CAS  PubMed  Google Scholar 

  101. Hijazi I, Khedhiri K, Campidelli S et al (2018) Grafting of porphyrin oligomers on single-walled carbon nanotubes by hay coupling. Org Biomol Chem 16:6767–6772

    CAS  PubMed  Google Scholar 

  102. Chen J, Collier CP et al (2005) Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J Phys Chem B 109:7605–7609

    CAS  PubMed  Google Scholar 

  103. Girek B, Sliwa W et al (2015) Hybrids of cationic porphyrin with nanocarbons. J Incl Phenom Macrocycl Chem 82:283–300

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Murakami H, Nomura T, Nakashima N et al (2003) Noncovalent porphyrin functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem Phys Lett 378:481–485

    CAS  Google Scholar 

  105. Roquelet C, Langlois B, Vialla F, Garrot D, Lauret JS, Voisin C et al (2013) Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chem Phys 413:45–54

    CAS  Google Scholar 

  106. Dirian K, Herranz MA, Katsukis G, Malig J, Rodriguez-Perez L, Romero-Nieto C, Strauss V, Martin N, Guldi DM et al (2013) Low dimensional nanocarbons – chemistry and energy/electron transfer reactions. Chem Sci 4:4335–4353

    CAS  Google Scholar 

  107. Arellano LM, Barrejon M, Gobeze HB, Gomez-Escalonilla MJ, Fierro JLG, D’Souza F, Langa F et al (2017) Charge stabilizing tris(triphenylamine)-zinc porphyrin-carbon nanotube hybrids: synthesis, characterization and excited state charge transfer studies. Nanoscale 9:7551–7558

    CAS  PubMed  Google Scholar 

  108. Baek J, Umeyama T, Mizuno S, Tkachenko NV, Imahori H et al (2018) Photophysical properties of porphyrin dimer-single walled carbon nanotube linked systems. J Phys Chem C 122:13285–13293

    CAS  Google Scholar 

  109. Campidelli S, Sooambar C, Diz EL, Ehli C, Guldi DM et al (2006) Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J Am Chem Soc 128:12544–12552

    CAS  PubMed  Google Scholar 

  110. Ehli C, Campidelli S, Brunetti FG, Prato M, Guldi DM et al (2007) Single-wall carbon nanotube porphyrin nanoconjugates. J Porphyrins Phthalocyanines 11:442–447

    CAS  Google Scholar 

  111. Palacin T, Khanh HL, Jousselme B, Jegou P, Filoramo A, Ehli C, Guldi DM, Campidelli S et al (2009) Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc 131:15394–15402

    CAS  PubMed  Google Scholar 

  112. Menon A, Münich PW, Wagner P, Officer DL, Guldi DM et al (2021) Amphiphilic zinc porphyrin single walled carbon nanotube hybrids: efficient formation and excited states charge transfer studies. Small. https://doi.org/10.1002/smll.202005648

  113. Zhong Q, Diev VV, Roberts ST, Antunez PD, Brutchey RL, Bradforth SE, Thompson ME et al (2013) Fused porphyrin-single-walled carbon nanotube hybrids: efficient formation and photophysical characterization. ACS Nano 7:3466–3475

    CAS  PubMed  Google Scholar 

  114. D’Souza F, Sandanayaka ASD, Ito O et al (2010) SWNT-based supramolecular nanoarchitectures with photosensitizing donor and acceptor molecules. J Phys Chem Lett 1:2586–2593

    Google Scholar 

  115. Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M et al (2004) Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew Chem Int Ed 43:5526–5530

    CAS  Google Scholar 

  116. Das SK, Subbaiyan NK, D’Souza F, Sandanayaka ASD, Hasobe T, Ito O et al (2011) Photoinduced processes of the supramolecularly functionalized semi-conductive SWCNTs with porphyrins via ion-pairing interactions. Energy Environ Sci 4:707–716

    CAS  Google Scholar 

  117. D’Souza F, Chitta R, Sandanayaka ASD, Subbaiyan NK, D’Souza L, Araki Y, Ito O et al (2007) Self-assembled single walled carbon nanotube: zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer. Chem Eur J 13:8277–8284

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk M. Guldi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Menon, A., Kaur, R., Guldi, D.M. (2022). Merging Carbon Nanostructures with Porphyrins. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_24

Download citation

Publish with us

Policies and ethics

Navigation