Metal Coordination Nanomedicine

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 821 Accesses

Abstract

Metal coordination platforms (MCPs), as emerging drug delivery carriers in the field of nanomaterials, are based on the coordination of ligands with metal ions as a framework, through a simple preparation composition process, and do not affect the activity of natural ligands. MCPs can choose a series of elements to match and play a unique role. Supramolecular MCPs have special physicochemical properties which can exploit the advantages of conventional inorganic and organic materials. By adjusting the structural composition of the metal ions and binding ligands, many multifunctional theranostic nanomedicines can be designed and synthesized. More importantly, metal-ligand self-assembly utilizing multiple functional ligands can be surface-modified, drug-encapsulated, or materially modified to accommodate flexible environmental responses. Therefore, an overview of metals and ligands in the field of nanomedicine is beneficial for current research and development and provides clear directions for future study. In this chapter, progress in the preparation and application of MCPs for nanomedicine is highlighted, and the prospects and challenges of self-assembly MCPs for functional optimization and clinical translation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suarez-Garcia S, Solorzano R, Alibes R, Busque F, Novio F, Ruiz-Molina D (2021) Antitumour activity of coordination polymer nanoparticles. Coordin Chem Rev 441:213977

    Article  Google Scholar 

  2. Wang J, Li YY, Nie GJ (2021) Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 6:766–783

    Article  Google Scholar 

  3. Liu YH, Lv SB, Liu DP, Song FL (2020) Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomater 116:16–31

    Article  Google Scholar 

  4. Zhang Z, Sang W, **e LS, Li WX, Li B, Li J, Tian H, Yuan Z, Zhao Q, Dai YL (2021) Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment. Angew Chem Int Ed 60:1967–1975

    Article  Google Scholar 

  5. He S, Mei L, Wu C, Tao M, Zhai Z, Xu K, Zhong W (2019) In situ hydrogelation of bicalutamide-peptide conjugates at prostate tissue for smart drug release based on pH and enzymatic activity. Nanoscale 11:5030–5037

    Article  Google Scholar 

  6. Datta S, Misra SK, Saha ML, Lahiri N, Louie J, Pan DPJ, Stang PJ (2018) Proc., orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Natl Acad Sci 115:8087–8092

    Article  Google Scholar 

  7. Lee S, Oh S, Oh M (2020) Atypical hybrid metal-organic frameworks (MOFs): a combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew Chem Int Ed 59:1327–1333

    Article  Google Scholar 

  8. Kong WH, Wang LL, Zhao Y, Chen H, Liu YM, Han XY, Yang Y, Wang J, You CJ, Liu YL (2021) Sequential module coordination-driven programmable function switch of metal-molecule nanoframeworks for cancer theranostics. Nano Today 38:101126

    Article  Google Scholar 

  9. Chen H, Fu Y, Feng K, Zhou Y, Wang X, Huang H, Chen Y, Wang W, Xu Y, Tian H, Mao Y, Wang J, Zhang Z (2021) Polydopamine-coated UiO-66 nanoparticles loaded with perfluorotributylamine/tirapazamine for hypoxia-activated osteosarcoma therapy. J Nanobiotechnol 19:298

    Article  Google Scholar 

  10. Li Z, Yang Y, Wei H, Shan X, Wang X, Ou M, Liu Q, Gao N, Chen H, Mei L, Zeng X (2021) Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy. J Control Release 338:719–730

    Article  Google Scholar 

  11. Meng X, Chen L, Lv R, Liu M, He N, Wang Z (2020) A metal-phenolic network-based multifunctional nanocomposite with pH-responsive ROS generation and drug release for synergistic chemodynamic/photothermal/chemo-therapy. J Mater Chem B 8:2177–2188

    Article  Google Scholar 

  12. Huang Z, Huang L, Huang Y, He Y, Sun X, Fu X, Xu X, Wei G, Chen D, Zhao C (2017) Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy. Nanoscale 9:15883–15894

    Article  Google Scholar 

  13. Yang Y, Zhu W, Feng L, Chao Y, Yi X, Dong Z, Yang K, Tan W, Liu Z, Chen M (2018) G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett 18:6867–6875

    Article  Google Scholar 

  14. Chu JQ, Wang DX, Zhang LM, Cheng M, Gao RZ, Gu CG, Lang PF, Liu PQ, Zhu LN, Kong DM (2020) Green layer-by-layer assembly of porphyrin/G-quadruplex-based near-infrared nanocomposite photosensitizer with high biocompatibility and bioavailability. ACS Appl Mater Interfaces 12:7575–7585

    Article  Google Scholar 

  15. Wang YM, Liu W, Yin XB (2017) Multifunctional mixed-metal nanoscale coordination polymers for triple-modality imaging-guided photodynamic therapy. Chem Sci 8:3891–3897

    Article  Google Scholar 

  16. Neufeld MJ, Lutzke A, Pratx G, Sun C (2021) High-Z metal-organic frameworks for X-ray radiation-based cancer theranostics. Chem Eur J 27:3229–3237

    Article  Google Scholar 

  17. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:309–315

    Article  Google Scholar 

  18. Sang W, **e LS, Wang GH, Li J, Zhang Z, Li B, Guo S, Deng CX, Dai YL (2021) Oxygen-enriched metal-phenolic X-ray nanoprocessor for cancer radio-radiodynamic therapy in combination with checkpoint blockade immunotherapy. Adv Sci 8:2003338

    Article  Google Scholar 

  19. ** QT, Zhu WJ, Jiang DW, Zhang R, Kutyreff CJ, Engle JW, Huang P, Cai WB, Liu Z, Cheng L (2017) Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of Cu-64 and multimodal imaging-guided photothermal therapy. Nanoscale 9:12609–12617

    Article  Google Scholar 

  20. Jiang W, Zhang H, Wu J, Zhai G, Li Z, Luan Y, Garg S (2018) CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy. ACS Appl Mater Interfaces 10:34513–34523

    Article  Google Scholar 

  21. Cai X, Deng X, **e Z, Shi Y, Pang M (2019) Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. J Lin, Chem Eng J 358:369–378

    Article  Google Scholar 

  22. Wang DD, Wu HH, Yang GB, Qian C, Gu L, Wang H, Zhou WQ, Liu JW, Wu YL, Zhang XD, Guo Z, Chen HZ, Jana DB, Zhao YL (2020) Metal-organic framework derived multicomponent nanoagent as a reactive oxygen species amplifier for enhanced photodynamic therapy. ACS Nano 14:13500–13511

    Article  Google Scholar 

  23. Yang B, Zhou S, Zeng J, Zhang LP, Zhang RH, Liang K, **e L, Shao B, Song SL, Huang G, Zhao DY, Chen P, Kong B (2020) Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res 13:1013–1019

    Article  Google Scholar 

  24. Li SH, Chen YL, Zhu W, Yang W, Chen ZW, Song JB, Song XR, Chen X, Yang HH (2021) Engineered nanoscale vanadium metallodrugs for robust tumor-specific imaging and therapy. Adv Funct Mater 31:2010337

    Article  Google Scholar 

  25. Huxford RC, deKrafft KE, Boyle WS, Liu DM, Lin WB (2012) Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem Sci 3:198–204

    Article  Google Scholar 

  26. Li MY, Wang CL, Di ZH, Li H, Zhang JF, Xue WT, Zhao MP, Zhang K, Zhao YL, Li LL (2019) Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew Chem Int Ed 58:1350–1354

    Article  Google Scholar 

  27. Tardy BL, Richardson JJ, Guo JL, Lehtonen J, Ago M, Rojas OJ (2018) Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chem 20:1335–1344

    Article  Google Scholar 

  28. Zhong QZ, Pan SJ, Rahim MA, Yun G, Li JH, Ju Y, Lin ZX, Han YY, Ma YT, Richardson JJ, Caruso F (2018) Spray assembly of metal-phenolic networks: formation, growth, and applications. ACS Appl Mater Interfaces 10:33721–33729

    Article  Google Scholar 

  29. Fan HL, Wang L, Feng XD, Bu YZ, Wu DC, ** ZX (2017) Supramolecular hydrogel formation based on tannic acid. Macromolecules 50:666–676

    Article  Google Scholar 

  30. Shi L, Han Y, Hilborn J, Ossipov D (2016) “Smart” drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium-biopolymer chemistry. Chem Commun 52:11151–11154

    Article  Google Scholar 

  31. Choi YC, Choi JS, Jung YJ, Cho YW (2014) Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking. J Mater Chem B 2:201–209

    Article  Google Scholar 

  32. Nejadnik MR, Yang X, Bongio M, Alghamdi HS, Van den Beucken JJJP, Huysmans MC, Jansen JA, Hilborn J, Ossipov D, Leeuwenburgh SCG (2014) Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials 35:6918–6929

    Article  Google Scholar 

  33. Shi LY, Zhao YN, **e QF, Fan CX, Hilborn J, Dai JW, Ossipov DA (2018) Moldable hyaluronan hydrogel enabled by dynamic metal-bisphosphonate coordination chemistry for wound healing. Adv Healthc Mater 7:1700973

    Article  Google Scholar 

  34. Tian R, Qin XY, Yuan PY, Lei K, Wang L, Bai YK, Liu SY, Chen X (2018) Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration. ACS Appl Mater Interfaces 10:17018–17027

    Article  Google Scholar 

  35. Shu HR, Xu X, Li WJ, Wang RY, Guo K (2020) Biomedical applications of hydrogels cross-linked by metal-ligand coordination. Chin J Appl Environ Biol 26:1554–1559

    Google Scholar 

  36. Liu JJ, Wu M, Pan YT, Duan YK, Dong ZL, Chao Y, Liu Z, Liu B (2020) Biodegradable nanoscale coordination polymers for targeted tumor combination therapy with oxidative stress amplification. Adv Funct Mater 30:1908865

    Article  Google Scholar 

  37. **e LS, Wang GH, Sang W, Li J, Zhang Z, Li WX, Yan J, Zhao Q, Dai YL (2021) Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials 269:120638

    Article  Google Scholar 

  38. Ren ZG, Sun SC, Sun RR, Cui GY, Hong LJ, Rao BC, Li A, Yu ZJ, Kan QC, Mao ZW (2020) A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv Mater 32:1906024

    Article  Google Scholar 

  39. Zhang M, Song RX, Liu YY, Yi ZG, Meng XF, Zhang JW, Tang ZM, Yao ZW, Liu Y, Liu XG, Bu WB (2019) Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem 5:2171–2182

    Article  Google Scholar 

  40. Chi YJ, Sun P, Gao Y, Zhang J, Wang LY (2022) Ion interference therapy of tumors based on inorganic nanoparticles. Biosensors 12:100

    Article  Google Scholar 

  41. Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T, Barberi-Heyob M (2015) Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics 5:1030–1045

    Article  Google Scholar 

  42. Dong ZL, Feng LZ, Chao Y, Hao Y, Chen MC, Gong F, Han X, Zhang R, Cheng L, Liu Z (2019) Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett 19:805–815

    Article  Google Scholar 

  43. Li J, **e LS, Li B, Yin C, Wang GH, Sang W, Li WX, Tian H, Zhang Z, Zhang XJ, Fan QL, Dai YL (2021) Engineering a hydrogen-sulfide-based nanomodulator to normalize hyperactive photothermal immunogenicity for combination cancer therapy. Adv Mater 33:2008481

    Article  Google Scholar 

  44. Tian H, Wang G, Sang W, **e L, Zhang Z, Li W, Yan J, Tian Y, Li J, Li B, Dai Y (2022) Manganese-phenolic nanoadjuvant combines sonodynamic therapy with cGAS-STING activation for enhanced cancer immunotherapy. Nano Today 43:101405

    Article  Google Scholar 

  45. Yan J, Wang G, **e L, Tian H, Li J, Li B, Sang W, Li W, Zhang Z, Dai Y (2022) Engineering radiosensitizer-based metal-phenolic networks potentiate STING pathway activation for advanced radiotherapy. Adv Mater 34:2105783

    Article  Google Scholar 

  46. **e LS, Li J, Wang GH, Sang W, Xu MZ, Li WX, Yan J, Li B, Zhang Z, Zhao Q, Yuan Z, Fan QL, Dai YL (2022) Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc 144:787–797

    Article  Google Scholar 

  47. Wang DD, Zhou JJ, Chen RH, Shi RH, Zhao GZ, **a GL, Li R, Liu ZB, Tian J, Wang HJ, Guo Z, Wang HB, Chen QW (2016) Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials 100:27–40

    Article  Google Scholar 

  48. Chen H, Peng C, Wang L, Li XX, Yang M, Liu HH, Qin HL, Chen WD (2021) Mechanically tough, healable hydrogels synergistically reinforced by UV-responsive crosslinker and metal coordination interaction for wound healing application. Chem Eng J 403:126341

    Article  Google Scholar 

  49. Novio F, Simmchen J, Vazquez-Mera N, Amorin-Ferre L, Ruiz-Molina D (2013) Coordination polymer nanoparticles in medicine, Coordin. Chem Rev 257:2839–2847

    Google Scholar 

  50. Suarez-Garcia S, Solorzano R, Novio F, Alibes R, Busque F, Ruiz-Molina D (2021) Coordination polymers nanoparticles for bioimaging. Coordin Chem Rev 432:213716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlu Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sang, W., Dai, Y. (2023). Metal Coordination Nanomedicine. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_33

Download citation

Publish with us

Policies and ethics

Navigation