Optimization of Process Parameters in AWJ Cutting of Pineapple Fiber Reinforced Polymer Composites: Hybrid SCCSA Algorithm

  • Chapter
  • First Online:
Bio-Fiber Reinforced Composite Materials

Part of the book series: Composites Science and Technology ((CST))

  • 547 Accesses

Abstract

The present study aims to prepare Pineapple Fiber Reinforced Polymer Composite. The kerf taper angle is then measured by cutting the composite with an abrasive water jet. The primary goal is to reduce the kerf taper angle in order to optimize machining performance. In this way, mathematical model was first developed by employing experimental approaches, beginning with the design plan called box-Behnken using response surface technique. The model's predicted values were found to be reasonably close to the actual experimental values. Then, a hybrid SCCSA algorithm has been utilized for optimizing the AWJ process parameters by single objective optimization is considered, and optimal value is determined. The results indicated that the SCCSA optimization strategy is a viable and effective method for optimizing the AWJ cutting process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sathish P, Kesavan R, Vijaya Ramnath B, Vishal C (2015) Effect of fiber orientation and stacking sequence on mechanical and thermal characteristics of banana-kenaf hybrid epoxy composite. SILICON 9:577–585

    Article  Google Scholar 

  2. AjitDhanawade SK (2018) Study on carbon epoxy composite surfaces machined by abrasive water jet machining. J Compos Mater 53:2909–2924

    Google Scholar 

  3. Ramraji K, Rajkumar K, Dhananchezian M, Sabarinathan P (2020) Key experimental investigations of cutting dimensionality by abrasive water jet machining on basalt fiber /fly ash reinforced polymer composite. Materials Today: Proceedings 22:1351–1359

    CAS  Google Scholar 

  4. MeltemAltinKaratas HG, MuammerNalbant, (2019) Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method. Aircr Eng Aerosp Technol 92:128–138

    Article  Google Scholar 

  5. Vigneshwaran S, Uthayakumar M, Arumugaprabu V (2017) Abrasive water jet machining of fiber-reinforced composite materials. J Reinf Plast Compos 37:230–237

    Article  Google Scholar 

  6. Kale A, Singh SK, Sateesh N, Subbiah R (2020) A review on abrasive water jet machining process and its process parameters. Materials Today: Proceedings 26(2):1032–1036

    Google Scholar 

  7. Shukla R, Singh D (2017) Experimentation investigation of abrasive water jet machining parameters using Taguchi and Evolutionary optimization techniques. Swarm Evol Comput 32:167–183

    Article  Google Scholar 

  8. Zain AM, Haron H, Sharif S (2011) Optimization of process parameters in the abrasive waterjet machining using integrated SA–GA. Appl Soft Comput 11:5350–5359

    Article  Google Scholar 

  9. Chakraborty S, Mitra A (2018) Parametric optimization of abrasive water-jet machining processes using grey wolf optimizer. Mater Manuf Processes 33(13):1–13

    Article  CAS  Google Scholar 

  10. Jagadeesh B, Dinesh Babu P, Nalla Mohamed M, Marimuthu P (2017) Experimental investigation and optimization of abrasive water jet cutting parameters for the improvement of cut quality in carbon fiber reinforced plastic laminates. J Ind Text 48:178–200

    Article  Google Scholar 

  11. Dhakal HN, Ismail SO, Ojo SO, Paggi M, Smith JR (2018) Abrasive water jet drilling of advanced sustainable bio-fiber-reinforced polymer/hybrid composites: a comprehensive analysis of machining-induced damage responses. The International Journal of Advanced Manufacturing Technology 99:2833–2847

    Article  Google Scholar 

  12. Shanmugam A, Krishnamurthy K, Mohanraj T (2019) Experimental study of surface roughness and taper angle in abrasive water jet machining of 7075 aluminum composite using response surface methodology. Surf Rev Lett 27(3):1950112

    Article  Google Scholar 

  13. Chaturvedi C, Rao P, Khan M (2021) Optimization of process variable in abrasive water jet Machining (AWJM) of Ti-6Al-4V alloy using Taguchi methodology. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.040

    Article  Google Scholar 

  14. Tripathi DR, Vachhani KH, Icon DB, Soni Kumari V, Kumar R, Abhishek K (2021) Experimental investigation and optimization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms. Mater Manuf Processes 36:803–813

    Article  CAS  Google Scholar 

  15. P. Thamizhvalavan, N. Yuvaraj, S. Arivazhagan (2021). Abrasive Water Jet Machining of Al6063/B4C/ZrSiO4 hybrid composites: a study of machinability and surface characterization analysis, Silicon, 1–29.

    Google Scholar 

  16. Tamilarasan A, Rajmohan T, Ashwinkumar KG, Dinesh B, Praveenkumar M, Dinesh Reddy R, Surya Kiran KVV, Elangumaran R, Krishnamoorthi S (2021) Hybrid WCMFO algorithm for the optimization of AWJ process parameters. IOP Conference Series: Materials Science and Engineering 954:1–10

    Google Scholar 

  17. Arumuga Prabu V, Thirumalai Kumaran S, Uthayakumar M (2016) Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite. Journal of Natural Fibers 14:450–457

    Article  Google Scholar 

  18. V. Durga Prasada Rao, M. Mrudula, V. Navya Geethika (2019). Multi-objective optimization of parameters in abrasive water jet machining of carbon-glass fiber-reinforced hybrid composites, Journal of The Institution of Engineers (India): Series D, 100, 55–66.

    Google Scholar 

  19. Jeykrishnan J, Vijaya Ramnath B, Sree Vignesh S, Sridharan P, Saravanan B (2019) Optimization of Process Parameters in Abrasive Water Jet Machining/Cutting (AWJM) of Nickel Alloy using Traditional Analysis to Minimize Kerf Taper Angle. Materials Today: Proceedings 16(2):392–397

    CAS  Google Scholar 

  20. Gupta V, Pandey P, Garg M, Khanna R, Batra N (2014) Minimization of Kerf Taper Angle and Kerf Width Using Taguchi’s Method in Abrasive Water Jet Machining of Marble. Procedia Materials Science. 6:140–149

    Article  CAS  Google Scholar 

  21. Yuvaraj N, Kumar M (2018) Optimisation of abrasive water jet cutting process parameters for AA5083-H32 aluminium alloy using fuzzy TOPSIS method. Int J Mach Mach Mater 20(2):118

    Google Scholar 

  22. Abhishek Madankar,ParikshitDumbhare,YogeshVasantraoDeshpande,Atul B. Andhare, Purushottam. S. Barve (2021) Estimation and control of surface quality and traverse speed in abrasive water jet machining of AISI 1030 steel using different work-piece thicknesses by RSM, (online), 1–9.

    Google Scholar 

  23. Tamilarasan A, Renugambal A, Manikanta D, Sekhar Reddy GBC, Sravankumar K, Sreekar B, Prasadreddy GV (2018) Application of crow search algorithm for the optimization of abrasive water jet cutting process parameters. IOP conference series: materials science and engineering 390:1–12

    Google Scholar 

  24. SeyedaliMirjalili(2016). SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge-Based Systems,96,120–133.

    Google Scholar 

  25. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  26. SoheylKhalilpourazari, Seyed Hamid Reza Pasandideh (2020). Sine–cosine crow search algorithm: theory and applications, 32, 7725–7742.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamilarasan, A., Rajmohan, T., Rajamani, D., Palanikumar, K. (2022). Optimization of Process Parameters in AWJ Cutting of Pineapple Fiber Reinforced Polymer Composites: Hybrid SCCSA Algorithm. In: Palanikumar, K., Thiagarajan, R., Latha, B. (eds) Bio-Fiber Reinforced Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8899-7_7

Download citation

Publish with us

Policies and ethics

Navigation