SEI and Water

  • Chapter
  • First Online:
Water in Lithium-Ion Batteries

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 430 Accesses

Abstract

The formation of solid electrolyte interphases (SEIs) is critical to ensure a safe operation and a long life of LIBs. H2O plays the most important role in the formation of SEIs. H2O initiates the formation of SEIs and is formed during the processes. In the viewpoint of the SEI formation, H2O is not a nuisance and is essential to LIBs. In this chapter, the reaction mechanism of the SEI formation is summarized. The importance of H2O is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 50.28
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 64.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan C, Xu R, **ao Y, Ding JF, Xu L, Li BQ, Huang JQ (2020) Adv Funct Mater 30:1909887

    Article  CAS  Google Scholar 

  2. Heiskanen SK, Kim J, Lucht BL (2019) Joule 3:2322

    Article  CAS  Google Scholar 

  3. Peled E, Menkin S (2017) J Electrochem Soc 164(7):A1703

    Article  CAS  Google Scholar 

  4. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL III (2016) Carbon 105:52

    Article  CAS  Google Scholar 

  5. Verma P, Maire1 P, Novák PA (2010) Electrochim Acta 55: 6332

    Google Scholar 

  6. Cheng CS, Wang FM, Rick J (2012) Int J Electrochem Sci 7:8676

    CAS  Google Scholar 

  7. Kitz PG, Novák P, Berg EJ (2020) ACS Appl Mater Interfaces 12: 15934

    Google Scholar 

  8. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q (2016) Adv Sci 3:1500213

    Article  Google Scholar 

  9. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Chem Rev 117:10403

    Article  CAS  Google Scholar 

  10. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) J Phys Chem C 117:13403

    Article  CAS  Google Scholar 

  11. Gauthier M, Carney TJ, Grimaud A, Giordano L, Pour N, Chang HH, Fenning DP, Lux SF, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, Shao-Horn Y (2015) J Phys Chem Lett 6:4653

    Article  CAS  Google Scholar 

  12. Saito M, Fujita M, Aoki Y, Yoshikawa M, Yasuda K, Ishigami R, Nakata Y (2016) Nucl Instr Meth B 371:273

    Article  CAS  Google Scholar 

  13. Nazri G, Muller RH (1985) J Electrochem Soc 132:2050

    Article  CAS  Google Scholar 

  14. Li Z, Xu F, Li C, Wang P, Yi W, Wang S, Yang L, Yan C, Li S (2021) ACS Appl Energy Mater 4:1199

    Article  CAS  Google Scholar 

  15. Dedryvère R, Gireaud L, Grugeon S, Laruelle S, Tarascon JM, Gonbeau D (2005) J Phys Chem B 109:15868

    Article  Google Scholar 

  16. Joho F, Rykart B, Imhof R, Novák P, Spahr M, Monnier A (1999) J Power Sources 81–82:243

    Article  Google Scholar 

  17. Bernhard R, Metzger M, Gasteiger HA (2015) J Electrochem Soc 162(10):A1984

    Article  CAS  Google Scholar 

  18. Jeschull F, Maibach J, Félix R, Wohlfahrt-Mehrens M, Edström K, Memm M, Brandell D (2018) ACS Appl Energy Mater 1: 5176

    Google Scholar 

  19. Jeschull F, Brandell D, Wohlfahrt-Mehrens M, Memm M (2017) Energy Technol 5:2108

    Article  CAS  Google Scholar 

  20. Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397

    Article  Google Scholar 

  21. Kim K, Ma H, Park S, Choi NS (2020) ACS Energy Lett 5:1537

    Article  CAS  Google Scholar 

  22. Wang H, Li X, Li F, Liu X, Yang S, Ma J (2021) Electrochem Commun 122: 106870

    Google Scholar 

  23. Zhao D, Li S (2020) Front Chem 8:821

    Article  CAS  Google Scholar 

  24. Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M (2016) ACS Appl Mater Interfaces 8:30871

    Article  CAS  Google Scholar 

  25. Yang L, Ravdel B, Lucht BL (2010) Electrochem Solid-State Lett 13:A95

    Article  CAS  Google Scholar 

  26. Wu J, Membreno N, Yu WY, Wiggins-Camacho JD, Flaherty DW, Mullins CB, Stevenson KJ (2012) J Phys Chem C 116:21208

    Article  CAS  Google Scholar 

  27. Bernardine LD, Rinkel DS, Hall IT, Clare PG (2020) J Am Chem Soc 142:15058

    Article  Google Scholar 

  28. Metzger M, Marino C, Sicklinger J, Haering D, Gasteiger HA (2015) J Electrochem Soc 162(7):A1123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Futoshi Matsumoto .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsumoto, F., Gunji, T. (2022). SEI and Water. In: Water in Lithium-Ion Batteries. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-8786-0_4

Download citation

Publish with us

Policies and ethics

Navigation