Sustainable Polymer-Based Materials for Energy and Environmental Applications

  • Chapter
  • First Online:
Polymer-Based Advanced Functional Materials for Energy and Environmental Applications

Abstract

Polymers are an important class of materials that are providing unparalleled benefits in our daily life. Over the past decade, there is a rapid increase in demand for ecofriendly materials to counter various problems, such as environmental issues, biodegradability, sustainability, and biocompatibility. Thus, sustainable polymers derived from renewable resources is fast growing and evolving research field for energy and environmental applications. The sustainable polymers can be derived from natural sources or synthesized from renewable resources. However, in order to design ecofriendly materials, there is a need for a basic knowledge of sustainable polymers. Therefore, the present book chapter provides discussion on the classification of sustainable polymers and their structures, physical and chemical properties. Further, polymeric materials which exhibit high performance for energy storage and environmental applications are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 147.69
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdellah MH, Pérez-Manríquez L, Puspasari T, Scholes CA, Kentish SE, Peinemann K-V (2018) A catechin/cellulose composite membrane for organic solvent nanofiltration. J Membr Sci 567:139–145

    Article  CAS  Google Scholar 

  • Abrisham M, Noroozi M, Panahi-Sarmad M, Arjmand M, Goodarzi V, Shakeri Y, Golbaten-Mofrad H, Dehghan P, Sahzabi AS, Sadri M (2020) The role of polycaprolactone-triol (PCL-T) in biomedical applications: a state-of-the-art review. Eur Polym J 131:109701

    Google Scholar 

  • Aili D, Jensen JO, Li Q (2021) Polymers for fuel cells. In: Kobayashi S, Müllen K, (eds) Encyclopedia of polymeric nanomaterials. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–13

    Google Scholar 

  • Ajjan FN, Casado N, Rębiś T, Elfwing A, Solin N, Mecerreyes D, Inganäs O (2016) High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. J Mater Chem A 4:1838–1847

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  • Aoki K, Saito N (2020) Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics 12:95

    Article  CAS  Google Scholar 

  • Araujo RB, Banerjee A, Panigrahi P, Yang L, Strømme M, Sjödin M, Araujo CM, Ahuja R (2017) Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. J Mater Chem A 5:4430–4454

    Article  CAS  Google Scholar 

  • Arunachalam P (2018) 6–Polymer-based nanocomposites for energy and environmental applications. In: Jawaid M, Khan MM (eds) Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing, pp 185–203

    Chapter  Google Scholar 

  • Aslam M, Kalyar MA, Raza ZA (2018) Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 58:2119–2132

    Article  CAS  Google Scholar 

  • Aswathy NR, Kumar SA, Mohanty S, Nayak SK, Palai AK (2021) Polyaniline/multi-walled carbon nanotubes filled biopolymer based flexible substrate electrodes for supercapacitor applications. J Energy Storage 35:102256

    Google Scholar 

  • Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  • Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47:6999–7013

    Article  CAS  Google Scholar 

  • Bakshi PS, Selvakumar D, Kadirvelu K, Kumar N (2020) Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. Int J Biol Macromol 150:1072–1083

    Article  CAS  Google Scholar 

  • Bandehali S, Sanaeepur H, Ebadi Amooghin A, Shirazian S, Ramakrishna S (2021) Biodegradable polymers for membrane separation. Separat Purif Technol 269:118731

    Google Scholar 

  • Bao W, Zhang Z, Gan Y, Wang X, Lia J (2013) Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder. J Energy Chem 22:790–794

    Article  CAS  Google Scholar 

  • Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487

    Article  CAS  Google Scholar 

  • Borgohain R, Mandal B (2019) pH responsive Carboxymethyl Chitosan/Poly(amidoamine) molecular gate membrane for CO2/N2 separation. ACS Appl Mater Interfaces 11:42616–42628

    Article  CAS  Google Scholar 

  • Chen Y, Liu N, Shao H, Wang W, Gao M, Li C, Zhang H, Wang A, Huang Y (2015) Chitosan as a functional additive for high-performance lithium–sulfur batteries. J Mater Chem A 3:15235–15240

    Article  CAS  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  • Chen J, Wang Y, Liu J, Xu X (2020) Preparation, characterization, physicochemical property and potential application of porous starch: a review. Int J Biol Macromol 148:1169–1181

    Article  CAS  Google Scholar 

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    Article  CAS  Google Scholar 

  • Dąbrowski A (2001) Adsorption—from theory to practice. Adv Coll Interface Sci 93:135–224

    Article  Google Scholar 

  • Elhenawy S, Khraisheh M, AlMomani F, Hassan M (2020) Key applications and potential limitations of ionic liquid membranes in the gas separation process of CO2, CH4, N2, H2 or mixtures of these gases from various gas streams. Molecules 25:4274

    Article  CAS  Google Scholar 

  • Fernando IPS, Lee W, Han EJ, Ahn G (2020) Alginate-based nanomaterials: fabrication techniques, properties, and applications. Chem Eng J 391:123823

    Google Scholar 

  • Gaur SS, Dhar P, Sonowal A, Sharma A, Kumar A, Katiyar V (2017) Thermo-mechanically stable sustainable polymer based solid electrolyte membranes for direct methanol fuel cell applications. J Membr Sci 526:348–354

    Article  CAS  Google Scholar 

  • Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108

    Article  CAS  Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  CAS  Google Scholar 

  • Gjipalaj J, Alessandri I (2017) Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment. J Environ Chem Eng 5:1763–1770

    Article  CAS  Google Scholar 

  • Halima NB (2016) Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832

    Article  Google Scholar 

  • Huang Y, Lee X, Grattieri M, Macazo FC, Cai R, Minteer SD (2018) A sustainable adsorbent for phosphate removal: modifying multi-walled carbon nanotubes with chitosan. J Mater Sci 53:12641–12649

    Article  CAS  Google Scholar 

  • Inganäs O, Admassie S (2014) 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa. Adv Mater 26:830–848

    Article  Google Scholar 

  • Jalil R, Nixon JR (1990) Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul 7:297–325

    Article  CAS  Google Scholar 

  • Jiang Y, Xu M, Yadavalli VK (2019) Silk fibroin-sheathed conducting polymer wires as organic connectors for biosensors. Biosensors 9:103

    Article  CAS  Google Scholar 

  • Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18:1175–1200

    Article  CAS  Google Scholar 

  • Kang G-D, Cao Y-M (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46:584–600

    Article  CAS  Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org Biomol Chem 8:576–591

    Article  CAS  Google Scholar 

  • Kouser R, Vashist A, Zafaryab M, Rizvi MA, Ahmad S (2018) Na-montmorillonite-dispersed sustainable polymer nanocomposite hydrogel films for anticancer drug delivery. ACS Omega 3:15809–15820

    Article  CAS  Google Scholar 

  • Kubowicz S, Booth AM (2017) Biodegradability of plastics: challenges and misconceptions. Environ Sci Technol 51:12058–12060

    Article  CAS  Google Scholar 

  • Kumar AA, Som A, Longo P, Sudhakar C, Bhuin RG, Gupta SS, Sankar MU, Chaudhary A, Kumar R, Pradeep T (2017) Confined metastable 2-line ferrihydrite for affordable point-of-use arsenic-free drinking water. Adv Mater 29:1604260

    Article  Google Scholar 

  • Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Dev 4:41–48

    Google Scholar 

  • Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  CAS  Google Scholar 

  • Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    CAS  Google Scholar 

  • Liu J, Zhang Q, Wu Z-Y, Wu J-H, Li J-T, Huang L, Sun S-G (2014) A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem Commun 50:6386–6389

    Article  CAS  Google Scholar 

  • Liu X, Chen Q, Lv L, Feng X, Meng X (2015) Preparation of transparent PVA/TiO2 nanocomposite films with enhanced visible-light photocatalytic activity. Catal Commun 58:30–33

    Article  Google Scholar 

  • Liu C, Shao Z, Wang J, Lu C, Wang Z (2016) Eco-friendly polyvinyl alcohol/cellulose nanofiber–Li+ composite separator for high-performance lithium-ion batteries. RSC Adv 6:97912–97920

    Article  CAS  Google Scholar 

  • Liu S, Wang Z, Song P (2018) Free radical graft copolymerization strategy to prepare catechin-modified chitosan loose nanofiltration (NF) membrane for dye desalination. ACS Sustain Chem Eng 6:4253–4263

    Article  CAS  Google Scholar 

  • Liu S, Qin S, He M, Zhou D, Qin Q, Wang H (2020) Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Comp Part B Eng 108238

    Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  • Lv J, Zhang G, Zhang H, Yang F (2017) Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals. Carbohyd Polym 174:190–199

    Article  CAS  Google Scholar 

  • Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohyd Polym 92:955–975

    Article  CAS  Google Scholar 

  • Maalige RN, Aruchamy K, Polishetti V, Halakarni M, Mahto A, Mondal D, Sanna Kotrappanavar N (2021) Restructuring thin film composite membrane interfaces using biopolymer as a sustainable alternative to prevent organic fouling. Carbohyd Polym 254:117297

    Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397

    Article  CAS  Google Scholar 

  • Marin E, Rojas J, Ciro Y (2014) A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications. Afr J Pharm Pharmacol 8:674–684

    Google Scholar 

  • Mehta S, Jha S, Liang H (2020) Lignocellulose materials for supercapacitor and battery electrodes: a review. Renew Sustain Energy Rev 134:110345

    Google Scholar 

  • Melinte V, Stroea L, Chibac-Scutaru AL (2019) Polymer nanocomposites for photocatalytic applications. Catalysts 9:986

    Google Scholar 

  • Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  • Meng Y, Lu J, Cheng Y, Li Q, Wang H (2019) Lignin-based hydrogels: A review of preparation, properties, and application. Int J Biol Macromol 135:1006–1019

    Article  CAS  Google Scholar 

  • Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554

    Article  CAS  Google Scholar 

  • Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978

    Article  CAS  Google Scholar 

  • Mochane MJ, Magagula SI, Sefadi JS, Mokhena TC (2021) A review on green composites based on natural fiber-reinforced polybutylene succinate (PBS). Polymers 13:1200

    Article  CAS  Google Scholar 

  • Mohajerani M, Mehrvar M, Ein-Mozaffari F (2009) An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Int J Eng 3:120–146

    Google Scholar 

  • Mohapatra S, Maity S, Dash HR, Das S, Pattnaik S, Rath CC, Samantaray D (2017) Bacillus and biopolymer: prospects and challenges. Biochem Biophys Rep 12:206–213

    Google Scholar 

  • Mok CF, Ching YC, Muhamad F, Osman NAA, Dai Hai N, Hassan CRC (2020) Adsorption of dyes using poly (vinyl alcohol)(PVA) and PVA-based polymer composite adsorbents: a review. J Polym Environ 28:775–793

    Article  CAS  Google Scholar 

  • Mruthunjayappa MH, Sharma VT, Dharmalingam K, Sanna Kotrappanavar N, Mondal D (2020) Engineering a biopolymer-based ultrafast permeable aerogel membrane decorated with task-specific Fe–Al nanocomposites for robust water purification. ACS Appl Bio Mater 3:5233-5243

    Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021a) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohyd Polym 251:116986

    Google Scholar 

  • Nawi M, Sabar S (2012) Photocatalytic decolourisation of reactive red 4 dye by an immobilised TiO2/chitosan layer by layer system. J Colloid Interface Sci 372:80–87

    Article  CAS  Google Scholar 

  • Nechita P (2017) Applications of chitosan in wastewater treatment. Biol Activ Appl Mar Polysacchar 1:209–228

    Google Scholar 

  • Nevárez LM, Casarrubias LB, Canto OS, Celzard A, Fierro V, Gómez RI, Sánchez GG (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohyd Polym 86:732–741

    Article  Google Scholar 

  • Ngah WW, Teong L, Hanafiah MM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohyd Polym 83:1446–1456

    Article  Google Scholar 

  • Nikolaeva D, Azcune I, Tanczyk M, Warmuzinski K, Jaschik M, Sandru M, Dahl PI, Genua A, Lois S, Sheridan E (2018) The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation. J Membr Sci 564:552–561

    Article  CAS  Google Scholar 

  • Pei M, Zhang B, He Y, Su J, Gin K, Lev O, Shen G, Hu S (2019) State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. Environ Int 131:105026

    Google Scholar 

  • Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  • Pérez-Madrigal MM, Estrany F, Armelin E, Díaz DD, Alemán C (2016) Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. J Mater Chem A 4:1792–1805

    Article  Google Scholar 

  • Prasad B, Mandal B (2018) Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 separation. J Ind Eng Chem 66:419–429

    Article  CAS  Google Scholar 

  • Pronk W, Ding A, Morgenroth E, Derlon N, Desmond P, Burkhardt M, Wu B, Fane AG (2019) Gravity-driven membrane filtration for water and wastewater treatment: a review. Water Res 149:553–565

    Article  CAS  Google Scholar 

  • Rafiqah S, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi M, Lee CH (2021) A review on properties and application of bio-based poly (Butylene Succinate). Polymers 13:1436

    Article  CAS  Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471

    Article  CAS  Google Scholar 

  • Robens E, Jayaweera SAA (2014) Early history of adsorption measurements. Adsorpt Sci Technol 32:425–442

    Article  CAS  Google Scholar 

  • Rowe BW, Freeman BD, Paul DR (2010) Influence of previous history on physical aging in thin glassy polymer films as gas separation membranes. Polymer 51:3784–3792

    Article  CAS  Google Scholar 

  • Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761

    Article  CAS  Google Scholar 

  • Schneiderman DK, Hillmyer MA (2017) 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50:3733–3749

    Article  CAS  Google Scholar 

  • Scholes C, Kentish S, Stevens G (2010) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1

    Google Scholar 

  • Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80

    Article  CAS  Google Scholar 

  • Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nat News 532:435

    Article  Google Scholar 

  • Shukla A, Maiti P (2019) Biodegradable polymer-based nanohybrids for controlled drug delivery and implant applications. In: Katiyar V, Gupta R, Ghosh T, (eds) Advances in sustainable polymers: processing and applications. Springer Singapore: Singapore, pp 3–19

    Google Scholar 

  • Sinha V, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23

    Article  CAS  Google Scholar 

  • Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A (2017) The review of versatile application of collagen. Polym Adv Technol 28:4–9

    Article  CAS  Google Scholar 

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  • Song J, Liu J, Zhao W, Chen Y, **ao H, Shi X, Liu Y, Chen X (2018) Quaternized Chitosan/PVA aerogels for reversible CO2 capture from ambient air. Ind Eng Chem Res 57:4941–4948

    Article  CAS  Google Scholar 

  • Srinivasan S, Kannan AM, Kothurkar N, Khalil Y, Kuravi S (2015) Nanomaterials for energy and environmental applications. J Nanomater 2015:979026

    Google Scholar 

  • Su X, Liao Q, Liu L, Meng R, Qian Z, Gao H, Yao J (2017) Cu2O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst. Cellulose 24:1017–1029

    Article  CAS  Google Scholar 

  • Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohyd Polym 153:34–46

    Article  CAS  Google Scholar 

  • Torstensen JØ, Helberg RML, Deng L, Gregersen ØW, Syverud K (2019) PVA/nanocellulose nanocomposite membranes for CO2 separation from flue gas. Int J Greenhouse Gas Control 81:93–102

    Article  CAS  Google Scholar 

  • Tropp J, Rivnay J (2021) Design of biodegradable and biocompatible conjugated polymers for bioelectronics. J Mater Chem C

    Google Scholar 

  • Varma RS (2019) Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustain Chem Eng 7:6458–6470

    Article  CAS  Google Scholar 

  • Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS (2020) Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers 12:512

    Article  CAS  Google Scholar 

  • Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77:34–41

    Article  CAS  Google Scholar 

  • Wang L, Wang R, Oliveira R (2009) A review on adsorption working pairs for refrigeration. Renew Sustain Energy Rev 13:518–534

    Article  CAS  Google Scholar 

  • Wang C, Yang F, Zhang H (2010) Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria. Sep Purif Technol 75:358–365

    Article  CAS  Google Scholar 

  • Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L (2014) High areal and volumetric capacity sustainable all-polymer paper-based supercapacitors. J Mater Chem A 2:16761–16769

    Article  CAS  Google Scholar 

  • Wang S, Li X, Wu H, Tian Z, **n Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Guiver MD (2016) Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci 9:1863–1890

    Article  CAS  Google Scholar 

  • Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B (2019) Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol 49:318–356

    Article  CAS  Google Scholar 

  • Wang Z, Ganewatta MS, Tang C (2020) Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog Polym Sci 101:101197

    Google Scholar 

  • **a Y, Liu B, Wang Y (2019) Effects of covalent bond interactions on properties of polyimide grafting sulfonated polyvinyl alcohol proton exchange membrane for vanadium redox flow battery applications. J Power Sourc 433:126680

    Google Scholar 

  • **e A, Cui J, Chen Y, Lang J, Li C, Yan Y, Dai J (2019) One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation. Surf Coat Technol 361:19–26

    Article  CAS  Google Scholar 

  • Yang J-S, **e Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohyd Polym 84:33–39

    Article  CAS  Google Scholar 

  • Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers—a critical review. Resour Conserv Recycl 78:54–66

    Article  Google Scholar 

  • Yuan Z, Eden MR, Gani R (2016) Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind Eng Chem Res 55:3383–3419

    Article  CAS  Google Scholar 

  • Zangeneh H, Zinatizadeh A, Habibi M, Akia M, Isa MH (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36

    Article  CAS  Google Scholar 

  • Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45:5888–5924

    Article  CAS  Google Scholar 

  • Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKN acknowledges the Department of Science and Technology, Government of India for DST-Nanomission Project (SR/NM/NT-1073/2016), DST-Technology Mission Project (DST/TMD/HFC/2K18/124G)Government of India and Talent Attraction Programmed funded by the Community of Madrid, Spain (2017-T1/AMB5610), and the Government of India for DST-INSPIRE Fellowship, Grant IFA12-CH-84.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nataraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nidhi Maalige, R., Mruthunjayappa, M.H., Nataraj, S.K. (2022). Sustainable Polymer-Based Materials for Energy and Environmental Applications. In: Subramani, N.K., Nataraj, S.K., Patel, C., Shivanna, S. (eds) Polymer-Based Advanced Functional Materials for Energy and Environmental Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8755-6_2

Download citation

Publish with us

Policies and ethics

Navigation