Eco-friendly Nanostructured Materials for Arsenic Removal from Aqueous Basins

  • Reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

The contamination of water basins used as drinking water resources is a topic of major concern for public health. Arsenic is one of the major sources of aqueous contamination of broad global-level concern. This metalloid reaches aqueous basins by natural and anthropogenic activities causing countless problems in the environment, so its removal is of great importance. Numerous technologies are used to further reduce or eliminate arsenic from aqueous systems using various materials as active components. Nanostructured materials offer large contact surfaces and unique properties for efficient arsenic removal from contaminated water by different techniques. Many developments have been recently proposed as sustainable and environmentally friendly solutions for this purpose. In addition, there is promising evidence of the use of these nanomaterials for the removal of toxic metals from aqueous sources.

The aim of this chapter is to present a holistic view of the most recent eco-friendly nanostructured materials used for arsenic removal from contaminated aqueous systems. Different aspects of each approach are discussed, such as the removal efficiency, the cost-effectiveness, the ease of manipulation, separation and regeneration, and the suitability for field application and the challenges that are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  Google Scholar 

  2. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  3. Smedley PL, Kinniburgh DG (2002) A review of the source behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  4. Baigorria E, Cano LA, Alvarez VA (2020) Nanoclays as eco-friendly adsorbents of arsenic for water purification. In: Kharissova OV, Martínez LMT, Kharisov BI (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer International Publishing, Cham, pp 1–17

    Google Scholar 

  5. World Health Organization (WHO). Arsenic. https://www.who.int/ipcs/assessment/public_health/arsenic/en/

  6. Flora SJS (2015) Arsenic: chemistry, occurrence, and exposure. In Handbook of arsenic toxicology, pp 1–49. Edited by S.J.S. Flora. Academic Press

    Google Scholar 

  7. Ali W, Rasool A, Junaid M, Zhang H (2019) A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health 41:737–760. https://doi.org/10.1007/s10653-018-0169-x

    Article  CAS  Google Scholar 

  8. Susan A, Rajendran K, Sathyasivam K, Krishnan UM (2019) An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 109:838–852. https://doi.org/10.1016/j.biopha.2018.10.099

    Article  CAS  Google Scholar 

  9. Davey JC, Nomikos AP, Wungjiranirun M et al (2008) Arsenic as an endocrine disruptor: arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environ Health Perspect 116:165–172. https://doi.org/10.1289/ehp.10131

    Article  CAS  Google Scholar 

  10. GEH Wasserchemie. Arsenic removal from drinking water. https://www.geh-wasserchemie.com/en/applications/drinking-water/

  11. DMI-65® – Filtration media for industrial & municipal water treatment. https://dmi65.com/

  12. Amen R, Bashir H, Bibi I et al (2020) A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem Eng J 396:125195

    Article  CAS  Google Scholar 

  13. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents – a critical review. J Hazard Mater 142:1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  CAS  Google Scholar 

  14. Panagiotaras D, Panagopoulos G, Papoulis D, Avramidis P (2012) Arsenic geochemistry in groundwater system. Geochem – Earth’s Syst Process. https://doi.org/10.5772/39384

  15. Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  16. Shankar S, Shanker U (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014

    Google Scholar 

  17. Tandon PK, Shukla RC, Singh SB (2013) Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor. Ind Eng Chem Res 52:10052–10058. https://doi.org/10.1021/ie400702k

    Article  CAS  Google Scholar 

  18. Uppal JS, Zheng Q, Le XC (2019) Arsenic in drinking water – recent examples and updates from Southeast Asia. Curr Opin Environ Sci Health 7:126–135. https://doi.org/10.1016/j.coesh.2019.01.004

    Article  Google Scholar 

  19. Baigorria E, Galhardi JA, Fraceto LF (2021) Trends in polymers networks applied to the removal of aqueous pollutants: a review. J Clean Prod 295:126451. https://doi.org/10.1016/j.jclepro.2021.126451

    Article  CAS  Google Scholar 

  20. Nidheesh PV, Karim AV, Singh TS et al (2018) Mechanism of treatment methods of arsenic-contaminated water. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Mechanisms of arsenic toxicity and tolerance in plants. Springer, Singapore, pp 405–455

    Chapter  Google Scholar 

  21. Baigorria E, Cano LA, Sanchez LM et al (2020) Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: preparation, characterization and their use as arsenic removal devices. Environ Nanotechnol Monit Manage 14:100364. https://doi.org/10.1016/j.enmm.2020.100364

    Article  Google Scholar 

  22. Burakov AE, Galunin EV, Burakova IV et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712. https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  Google Scholar 

  23. Bilal M, Rasheed T, Mehmood S et al (2020) Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials – a review. Chemosphere 253:126770. https://doi.org/10.1016/j.chemosphere.2020.126770

    Article  CAS  Google Scholar 

  24. Khodakarami M, Bagheri M (2021) Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment. J Clean Prod:126404. https://doi.org/10.1016/j.jclepro.2021.126404

  25. Rizwan M, Shoukat A, Ayub A et al (2021) Types and classification of nanomaterials. In: Tahir MB, Sagir M, Asiri AM (eds) Characterization, Hazards and Safety AMBT-NS. Micro and nano technologies. Elsevier, Amsterdam. pp 31–54

    Google Scholar 

  26. Chen G, Liu Y, Liu F, Zhang X (2014) Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability. Appl Surf Sci 311:808–815. https://doi.org/10.1016/j.apsusc.2014.05.171

    Article  CAS  Google Scholar 

  27. Alomar MK, Alsaadi MA, Hayyan M et al (2016) Functionalization of CNTs surface with phosphonium based deep eutectic solvents for arsenic removal from water. Appl Surf Sci 389:216–226. https://doi.org/10.1016/j.apsusc.2016.07.079

    Article  CAS  Google Scholar 

  28. Mayo JT, Yavuz C, Yean S et al (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75. https://doi.org/10.1016/j.stam.2006.10.005

    Article  CAS  Google Scholar 

  29. Thirunavukkarasu OS, Viraraghavan T, Subramanian KS (2003) Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Pollut 142:95–111. https://doi.org/10.1023/A:1022073721853

    Article  CAS  Google Scholar 

  30. Tang W, Su Y, Li Q et al (2013) Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res 47:3624–3634. https://doi.org/10.1016/j.watres.2013.04.023

    Article  CAS  Google Scholar 

  31. Bissen M, Vieillard-Baron M-M, Schindelin AJ, Frimmel FH (2001) TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44:751–757. https://doi.org/10.1016/S0045-6535(00)00489-6

    Article  CAS  Google Scholar 

  32. Yazdani MR, Bhatnagar A, Vahala R (2017) Synthesis, characterization and exploitation of nano-TiO2/feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chem Eng J 316:370–382. https://doi.org/10.1016/j.cej.2017.01.121

    Article  CAS  Google Scholar 

  33. Chen Y, Shi H, Guo H et al (2020) Hydrated titanium oxide nanoparticles supported on natural rice straw for Cu (II) removal from water. Environ Technol Innov 20:101143. https://doi.org/10.1016/j.eti.2020.101143

    Article  CAS  Google Scholar 

  34. García-Carvajal C, Villarroel-Rocha J, Curvale D, Barroso-Quiroga MM, Sapag K (2019) Arsenic (V) removal from aqueous solutions using natural clay ceramic monoliths. Chem Eng Commun 206:1451–1462. https://doi.org/10.1080/00986445.2018.1564910

    Article  CAS  Google Scholar 

  35. Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe (III) -modified montmorillonite. J Hazard Mater 186:1713–1719. https://doi.org/10.1016/j.jhazmat.2010.12.074

    Article  CAS  Google Scholar 

  36. Mohapatra D, Mishra D, Chaudhury GR et al (2007) Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J Environ Sci Health Part A 42:463–469. https://doi.org/10.1080/10934520601187666

    Article  CAS  Google Scholar 

  37. Sanchez LM, Actis D, Gonzalez J et al (2019) Effect of PAA-coated magnetic nanoparticles on the performance of PVA-based hydrogels developed to be used as environmental remediation devices. J Nanopart Res 21. https://doi.org/10.1007/s11051-019-4499-0

  38. Guo L, Ye P, Wang J et al (2015) Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J Hazard Mater 298:28–35. https://doi.org/10.1016/J.JHAZMAT.2015.05.011

    Article  CAS  Google Scholar 

  39. Su H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf A Physicochem Eng Asp 522:161–172. https://doi.org/10.1016/j.colsurfa.2017.02.065

    Article  CAS  Google Scholar 

  40. Vadahanambi S, Lee S-H, Kim W-J, Oh I-K (2013) Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ Sci Technol 47:10510–10517. https://doi.org/10.1021/es401389g

    Article  CAS  Google Scholar 

  41. Ihsanullah I (2020) MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem Eng J 388:124340. https://doi.org/10.1016/j.cej.2020.124340

    Article  CAS  Google Scholar 

  42. Huang X, Wang R, Jiao T et al (2019) Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega 4:1897–1906. https://doi.org/10.1021/acsomega.8b03615

    Article  CAS  Google Scholar 

  43. Chandra V, Park J, Chun Y et al (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986. https://doi.org/10.1021/nn1008897

    Article  CAS  Google Scholar 

  44. Haque N, Morrison G, Cano-Aguilera I, Gardea-Torresdey JL (2008) Iron-modified light expanded clay aggregates for the removal of arsenic(V) from groundwater. Microchem J 88:7–13. https://doi.org/10.1016/j.microc.2007.08.004

    Article  CAS  Google Scholar 

  45. Almasri DA, Rhadfi T, Muataz AA et al (2018) High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem Eng J 335:1–12. https://doi.org/10.1016/J.CEJ.2017.10.031

    Article  CAS  Google Scholar 

  46. Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870. https://doi.org/10.1016/j.watres.2009.05.040

    Article  CAS  Google Scholar 

  47. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. https://doi.org/10.1021/es048991u

    Article  CAS  Google Scholar 

  48. Guan X, Du J, Meng X et al (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215–216:1–16. https://doi.org/10.1016/J.JHAZMAT.2012.02.069

    Article  Google Scholar 

  49. Chen J, Zhang X, Bi F et al (2020) A facile synthesis for uniform tablet-like TiO2/C derived from materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J Colloid Interface Sci 571:275–284. https://doi.org/10.1016/j.jcis.2020.03.055

    Article  CAS  Google Scholar 

  50. Bentahar Y, Hurel C, Draoui K et al (2016) Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl Clay Sci 119:385–392. https://doi.org/10.1016/j.clay.2015.11.008

    Article  CAS  Google Scholar 

  51. Asadullah M, Jahan I, Ahmed MB et al (2014) Preparation of microporous activated carbon and its modification for arsenic removal from water. J Ind Eng Chem 20:887–896. https://doi.org/10.1016/j.jiec.2013.06.019

    Article  CAS  Google Scholar 

  52. Chuang CL, Fan M, Xu M et al (2005) Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere 61:478–483. https://doi.org/10.1016/j.chemosphere.2005.03.012

    Article  CAS  Google Scholar 

  53. Lin T-F, Wu J-K (2001) Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res 35:2049–2057. https://doi.org/10.1016/S0043-1354(00)00467-X

    Article  CAS  Google Scholar 

  54. Giménez J, Martínez M, de Pablo J et al (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580. https://doi.org/10.1016/j.jhazmat.2006.07.020

    Article  CAS  Google Scholar 

  55. Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41:6149–6155. https://doi.org/10.1021/ie0203835

    Article  CAS  Google Scholar 

  56. Yang H, Lin W-Y, Rajeshwar K (1999) Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. J Photochem Photobiol A Chem 123:137–143. https://doi.org/10.1016/S1010-6030(99)00052-0

    Article  CAS  Google Scholar 

  57. Xu T, Kamat PV, O’Shea KE (2005) Mechanistic evaluation of arsenite oxidation in TiO2 assisted photocatalysis. J Phys Chem A 109:9070–9075. https://doi.org/10.1021/jp054021x

    Article  CAS  Google Scholar 

  58. Lenoble V, Bouras O, Deluchat V et al (2002) Arsenic adsorption onto pillared clays and iron oxides. J Colloid Interface Sci 255:52–58. https://doi.org/10.1006/jcis.2002.8646

    Article  CAS  Google Scholar 

  59. Goh KH, Lim TT, Dong Z (2009) Enhanced arsenic removal by hydrothermally treated nanocrystalline MG/AL layered double hydroxide with nitrate intercalation. Environ Sci Technol 43:2537–2543. https://doi.org/10.1021/es802811n

    Article  CAS  Google Scholar 

  60. Wu X-L, Wang L, Chen C-L et al (2011) Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. J Mater Chem 21:17353–17359. https://doi.org/10.1039/C1JM12678D

    Article  CAS  Google Scholar 

  61. Sheng G, Li Y, Yang X et al (2012) Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Adv 2:12400–12407. https://doi.org/10.1039/C2RA21623J

    Article  CAS  Google Scholar 

  62. La DD, Patwari JM, Jones LA et al (2017) Fabrication of a GNP/Fe–Mg binary oxide composite for effective removal of arsenic from aqueous solution. ACS Omega 2:218–226. https://doi.org/10.1021/acsomega.6b00304

    Article  CAS  Google Scholar 

  63. Yu F, Sun S, Ma J, Han S (2015) Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading. Phys Chem Chem Phys 17:4388–4397. https://doi.org/10.1039/C4CP04835K

    Article  CAS  Google Scholar 

  64. Malana MA, Qureshi RB, Ashiq MN (2011) Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: kinetics and mechanism. Chem Eng J 172:721–727. https://doi.org/10.1016/j.cej.2011.06.041

    Article  CAS  Google Scholar 

  65. Sahiner N, Ozay O, Aktas N et al (2011) Arsenic (V) removal with modifiable bulk and nano p(4-vinylpyridine)-based hydrogels: the effect of hydrogel sizes and quarternization agents. Desalination 279:344–352. https://doi.org/10.1016/J.DESAL.2011.06.028

    Article  CAS  Google Scholar 

  66. Cho DW, Jeon BH, Chon CM et al (2012) A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem Eng J 200–202:654–662. https://doi.org/10.1016/j.cej.2012.06.126

    Article  CAS  Google Scholar 

  67. Sanyang ML, Ghani WAWAK, Idris A, Bin AM (2016) Hydrogel biochar composite for arsenic removal from wastewater. Desalin Water Treat 57:3674–3688. https://doi.org/10.1080/19443994.2014.989412

    Article  CAS  Google Scholar 

  68. Thanawatpoontawee S, Imyim A, Praphairaksit N (2016) Iron-loaded zein beads as a biocompatible adsorbent for arsenic(V) removal. J Ind Eng Chem 43:127–132. https://doi.org/10.1016/j.jiec.2016.07.058

    Article  CAS  Google Scholar 

  69. Qi J, Zhang G, Li H (2015) Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresour Technol 193:243–249. https://doi.org/10.1016/j.biortech.2015.06.102

    Article  CAS  Google Scholar 

  70. He J, Bardelli F, Gehin A et al (2016) Novel chitosan goethite bionanocomposite beads for arsenic remediation. Water Res 101:1–9. https://doi.org/10.1016/j.watres.2016.05.032

    Article  CAS  Google Scholar 

  71. Peralta Ramos ML, González JA, Albornoz SG et al (2016) Chitin hydrogel reinforced with TiO2 nanoparticles as an arsenic sorbent. Chem Eng J 285:581–587. https://doi.org/10.1016/J.CEJ.2015.10.035

    Article  CAS  Google Scholar 

  72. Kumar ASK, Jiang S-J (2016) Chitosan-functionalized graphene oxide: a novel adsorbent an efficient adsorption of arsenic from aqueous solution. J Environ Chem Eng 4:1698–1713. https://doi.org/10.1016/J.JECE.2016.02.035

    Article  CAS  Google Scholar 

  73. Kumar R, Jain SK, Verma S, Malodia P (2015) Mercapto functionalized silica entrapped polyacrylamide hydrogel: arsenic adsorption behaviour from aqueous solution. J Colloid Interface Sci 456:241–245. https://doi.org/10.1016/j.jcis.2015.06.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina P. Ollier Primiano .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baigorria, E., Ollier Primiano, R.P., Alvarez, V.A. (2022). Eco-friendly Nanostructured Materials for Arsenic Removal from Aqueous Basins. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698-6_107

Download citation

Publish with us

Policies and ethics

Navigation