Sensor Systems for Drug Analysis Their Interferences

  • Chapter
  • First Online:
Biosensing and Micro-Nano Devices
  • 379 Accesses

Abstract

This chapter introduces sensors that can determine the drug amount in complex environments, including biological fluids such as sweat, tears, urine, plasma, etc. Determining the drug amount in the body is essential to understanding the function of the drug and its proper use. Today, analytical determination systems for a variety of drugs have undergone significant advances that improve sensitivity and selectivity. Among the analytical sensors, there are optical and electrochemical biosensors that have been used to measure clinically preferred drug molecules such as anticonvulsants, anticancer drugs, antibiotics, heart failure, cocaine, heroin, and (meth) amphetamine, etc. The development of digital healthcare devices and wearable electronic sensors over the past few years has revolutionized drug determination systems. Due to the importance of drug measurement, in the following, various sensors and the developments that have taken place in this field are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baldini F (2005) New trends in biosensors for health care. Springer, New York

    Book  Google Scholar 

  • Beeg M, Nobili A, Orsini B, Rogai F, Gilardi D, Fiorino G et al (2019) A surface plasmon resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies. Sci Rep 9:1–9

    Article  CAS  Google Scholar 

  • Brahm NC, Yeager LL, Fox MD, Farmer KC, Palmer TA (2010) Commonly prescribed medications and potential false-positive urine drug screens. Am J Health Syst Pharm 67:1344–1350

    Article  PubMed  Google Scholar 

  • Chen Y, Chen Q, Han M, Liu J, Zhao P, He L et al (2016) Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens Bioelectron 79:430–434

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528

    Article  CAS  PubMed  Google Scholar 

  • Coperet C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V et al (2016) Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem Rev 116:323–421

    Article  CAS  PubMed  Google Scholar 

  • de Souza Gil E, de Melo GR (2010) Electrochemical biosensors in pharmaceutical analysis. J Pharm Sci 46:375–391

    Google Scholar 

  • De Vries T, Henning RH, Hogerzeil HV, Fresle D, Policy M, Organization WH (1994) Guide to good prescribing: a practical manual. World Health Organization, Geneva

    Google Scholar 

  • Dey D, Goswami T (2011) Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol 2011:348218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Amigo C (2010) Antibody-based detection methods: from theory to practice. In: Molecular biological and immunological techniques and applications for food chemists. Wiley, Hoboken, pp 223–245

    Google Scholar 

  • Dodig S (2009) Interferences in quantitative immunochemical methods. Biochem Med 19:50–62

    Article  CAS  Google Scholar 

  • Emaminejad S, Gao W, Wu E, Davies ZA, Nyein HYY, Challa S et al (2017) Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc Natl Acad Sci 114:4625–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdem A, Kerman K, Meric B, Akarca US, Ozsoz M (2000) Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal Chim Acta 422:139–149

    Article  CAS  Google Scholar 

  • Ertürk Bergdahl G, Andersson T, Allhorn M, Yngman S, Timm R, Lood R (2019) In vivo detection and absolute quantification of a secreted bacterial factor from skin using molecularly imprinted polymers in a surface plasmon resonance biosensor for improved diagnostic abilities. ACS Sens 4:717–725

    Article  PubMed  CAS  Google Scholar 

  • Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26

    Article  CAS  PubMed  Google Scholar 

  • Favresse J, Burlacu M-C, Maiter D, Gruson D (2018) Interferences with thyroid function immunoassays: clinical implications and detection algorithm. Endocr Rev 39:830–850

    Article  PubMed  Google Scholar 

  • Garzón V, Pinacho DG, Bustos R-H, Garzón G, Bustamante S (2019) Optical biosensors for therapeutic drug monitoring. Biosensors 9:132

    Article  PubMed Central  CAS  Google Scholar 

  • Gauglitz G (2018) Analytical evaluation of sensor measurements. Anal Bioanal Chem 410:5–13

    Article  CAS  PubMed  Google Scholar 

  • Gil ES, Melo GR (2010) Electrochemical biosensors in pharmaceutical analysis. Braz J Pharm Sci 46:375–391

    Article  CAS  Google Scholar 

  • Girardin CM, Huot C, Gonthier M, Delvin E (2009) Continuous glucose monitoring: a review of biochemical perspectives and clinical use in type 1 diabetes. Clin Biochem 42:136–142

    Article  CAS  PubMed  Google Scholar 

  • Gurgel LVA, Gil LF (2009) Adsorption of Cu (II), Cd (II) and Pb (II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Res 43:4479–4488

    Article  CAS  PubMed  Google Scholar 

  • Han M, Gong L, Wang J, Zhang X, ** Y, Zhao R et al (2019) An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk. Sensors Actuators B Chem 292:94–104

    Article  CAS  Google Scholar 

  • Huang Q-D, Lv C-H, Yuan X-L, He M, Lai J-P, Sun H (2021) A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector. Sensors Actuators B Chem 328:129000

    Article  CAS  Google Scholar 

  • Hughes E, Stanford M, Qatarneh D (2016) Uveitis and medical ophthalmology. Training in Ophthalmology

    Google Scholar 

  • Ismail A (2009) Interference from endogenous antibodies in automated immunoassays: what laboratorians need to know. J Clin Pathol 62:673–678

    Article  CAS  PubMed  Google Scholar 

  • Jayathilaka WA, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C et al (2019) Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater 31:1805921

    Article  CAS  Google Scholar 

  • Johnson-Davis KL, Sadler AJ, Genzen JR (2016) A retrospective analysis of urine drugs of abuse immunoassay true positive rates at a national reference laboratory. J Anal Toxicol 40:97–107

    Article  CAS  PubMed  Google Scholar 

  • Jolley M (1981) Fluorescence polarization immunoassay for the determination of therapeutic drug levels in human plasma. J Anal Toxicol 5:236–240

    Article  CAS  PubMed  Google Scholar 

  • Jolley M, Stroupe S, Schwenzer K, Wang C, Lu-Steffes M, Hill H et al (1981) Fluorescence polarization immunoassay. III. An automated system for therapeutic drug determination. Clin Chem 27:1575–1579

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Kim T, Tak Y, Lee J-H, Yoon J (2012) Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J Ind Eng Chem 18:800–807

    Article  CAS  Google Scholar 

  • Karoyo AH, Wilson LD (2015) Nano-sized cyclodextrin-based molecularly imprinted polymer adsorbents for perfluorinated compounds—a mini-review. Nano 5:981–1003

    CAS  Google Scholar 

  • Kiran R, Scorsone E, Mailley P, Bergonzo P (2012) Quasi-real time quantification of uric acid in urine using boron doped diamond microelectrode with in situ cleaning. Anal Chem 84:10207–10213

    Article  CAS  PubMed  Google Scholar 

  • Lim DV (2003) Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proc IEEE 91:902–907

    Article  CAS  Google Scholar 

  • Lin S, Wang B, Yu W, Castillo K, Hoffman C, Cheng X et al (2020) Design framework and sensing system for noninvasive wearable electroactive drug monitoring. ACS Sens 5:265–273

    Article  CAS  PubMed  Google Scholar 

  • Long F, Zhu A, Shi H (2013) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 13:13928–13948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y (2018) Fiber optic sensors based on specialty optical fibers. The University of Nebraska-Lincoln, Nebraska-Lincoln

    Google Scholar 

  • Luz RCS, Damos FS, de Oliveira AB, Beck J, Kubota LT (2005) Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-l-lysine (PLL) for dopamine determination. Electrochim Acta 50:2675–2683

    Article  CAS  Google Scholar 

  • Manchikanti L, Malla Y, Wargo BW, Fellows B (2011) Comparative evaluation of the accuracy of immunoassay with liquid chromatography tandem mass spectrometry (LC/MS/MS) of urine drug testing (UDT) opioids and illicit drugs in chronic pain patients. Pain Physician 14:175–187

    Article  PubMed  Google Scholar 

  • Mapar M (2018) Waveguide evanescent-field microscopy for label-free monitoring of biological nanoparticles: fabrication, characterization and application. Chalmers Tekniska Hogskola, Gothenburg

    Google Scholar 

  • Martins TD, Ribeiro ACC, de Camargo HS, da Costa Filho PA, Cavalcante HPM, Dias DL (2013) New insights on optical biosensors: techniques, construction and application. In: State of the art in biosensors—general aspects. Intech Open, London, pp 112–139

    Google Scholar 

  • Masson J-F, Zhao SS, Bukar N, Pelletier JN, Labrecque-Carbonneau J, McKeating K et al (2015) Surface plasmon resonance (SPR) sensing for small molecules in biofluids. Opt Sens 2015:2

    Google Scholar 

  • Mercolini L, Mandrioli R, Conti M, Leonardi C, Gerra G, Raggi MA (2007) Simultaneous determination of methadone, buprenorphine and norbuprenorphine in biological fluids for therapeutic drug monitoring purposes. J Chromatogr B 847:95–102

    Article  CAS  Google Scholar 

  • Moeller KE, Lee KC, Kissack JC (2008) Urine drug screening: practical guide for clinicians. In: Mayo clinic proceedings. Elsevier, Amsterdam, pp 66–76

    Google Scholar 

  • Muthuraman G, Moon I-S (2012) A review on an electrochemically assisted-scrubbing process for environmental harmful pollutant's destruction. J Ind Eng Chem 18:1540–1550

    Article  CAS  Google Scholar 

  • Ndukaife JC (2012) Discrete opto-fluidic chemical spectrophotometry system (DOCSS) for online batch-sampling of heavy metals and fabrication of dithizone based evanescent wave optical fiber sensor. Purdue University, Purdue

    Google Scholar 

  • Nel AE, Mädler L, Velegol D, **a T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  • Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45:97–105

    Article  CAS  PubMed  Google Scholar 

  • Ranamukhaarachchi SA, Padeste C, Dübner M, Häfeli UO, Stoeber B, Cadarso VJ (2016) Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes. Sci Rep 6:29075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisfield GM, Barkin RL, Webb F, Wilson G (2007) Urine drug test interpretation: what do physicians know? J Opioid Manag 3:80–86

    Article  PubMed  Google Scholar 

  • Saitman A, Park H-D, Fitzgerald RL (2014) False-positive interferences of common urine drug screen immunoassays: a review. J Anal Toxicol 38:387–396

    Article  CAS  PubMed  Google Scholar 

  • Savino R, Paduano S, Preianò M, Terracciano R (2012) The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 13:13926–13948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Say J (2006) Eating and drinking: nutrient and fluid replacement for health. Compend Clin Skills Stud Nurs 2006:111

    Google Scholar 

  • Schwarz DA, George M, Bluth MH (2016) Toxicology in addiction medicine. Clin Lab Med 36:685–692

    Article  PubMed  Google Scholar 

  • Schwickart M, Vainshtein I, Lee R, Schneider A, Liang M (2014) Interference in immunoassays to support therapeutic antibody development in preclinical and clinical studies. Bioanalysis 6:1939–1951

    Article  CAS  PubMed  Google Scholar 

  • Shipovskov S, Saunders AM, Nielsen JS, Hansen MH, Gothelf KV, Ferapontova EE (2012) Electrochemical sandwich assay for attomole analysis of DNA and RNA from beer spoilage bacteria Lactobacillus brevis. Biosens Bioelectron 37:99–106

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J (2020) Biological biosensors for monitoring and diagnosis. In: Microbial biotechnology: basic research and applications. Springer, New York, pp 317–335

    Chapter  Google Scholar 

  • Smith MP, Bluth MH (2016) Common interferences in drug testing. Clin Lab Med 36:663–671

    Article  PubMed  Google Scholar 

  • Sonntag O, Scholer A (2001) Drug interference in clinical chemistry: recommendation of drugs and their concentrations to be used in drug interference studies. Ann Clin Biochem 38:376–385

    Article  CAS  PubMed  Google Scholar 

  • Spengler L (2018) Sufficiency as policy

    Google Scholar 

  • Taitt CR, Anderson GP, Ligler FS (2005) Evanescent wave fluorescence biosensors. Biosens Bioelectron 20:2470–2487

    Article  CAS  PubMed  Google Scholar 

  • Taylor PJ (2004) Therapeutic drug monitoring of immunosuppressant drugs by high-performance liquid chromatography–mass spectrometry. Ther Drug Monit 26:215–219

    Article  CAS  PubMed  Google Scholar 

  • Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R et al (2020) Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens 5:2679–2700

    Article  CAS  PubMed  Google Scholar 

  • Umar PJ, Gowhar NA, Gulzar KA, Raj K, Limaye S (2017) Electrochemical determination of an anti-hyperlipidimic drug pitavastatin at electrochemical sensor based on electrochemically pre-treated polymer film modified GCE. J Pharm Anal 7:258–264

    Article  Google Scholar 

  • W.H. Organization (1972) International drug monitoring: the role of national centres, report of a WHO meeting [held in Geneva from 20 to 25 September 1971]. World Health Organization, Geneva

    Google Scholar 

  • Zima J, Å vancara I, Barek J, VytÅ™as K (2009) Recent advances in electroanalysis of organic compounds at carbon paste electrodes. Crit Rev Anal Chem 39:204–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezaei, B., Mandani, S. (2022). Sensor Systems for Drug Analysis Their Interferences. In: Chandra, P. (eds) Biosensing and Micro-Nano Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-8333-6_11

Download citation

Publish with us

Policies and ethics

Navigation