Unsteady Aerodynamics with Case Studies

  • Chapter
  • First Online:
Introduction to Aeroelasticity
  • 450 Accesses

Abstract

Three-dimensional unsteady aerodynamics and computational approaches for continuation of Chap. 8 in unsteady Aerodynamics are elaborated in the present chapter (Reproduced from and based on several papers: [1,2,3,4]). Further it illustrates some of the contributions in lifting surfaces based on potential aerodynamic approaches and serves to provide and elaborate a good spectrum of problems and analytical approaches focusing on case studies in three-dimensional unsteady aerodynamic theory and computational methods. The first case study illustrates one of the first attempts in unsteady lifting potential flow solution method using geometric discretization and singularity distributions on the aerodynamic surface, which contributes to the present Boundary Element Method. The second case study addresses a more complex situation, that is the unsteady subsonic three-dimensional flow with separation bubble, and utilizes the singularity method. The third case study reflects the application of these previous techniques in addressing aircraft buffeting phenomena, a practical aeroelastic problem, using dynamic response approach The last case study elaborates the application of the three-dimensional unsteady aerodynamics lifting surface method to address combined aeroelasticity and acoustic excitation in a unified boundary element approach. These case studies are presented to provide an illustration of the application of lifting surface or boundary element method to solve unsteady aerodynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the present book q and Q, as well as q and Q, are alternatively used to denote fluid velocity vector, which by context can be distinguished from V as volume. Similarly, the vector cross product is represented by either × or \(\otimes\). Also, alternatively the substantial derivative \(\frac{d}{dt}\) and \(\frac{D}{Dt}\) are alternatively utilized.

  2. 2.

    Or equivalent expression in polar or cylindrical coordinates, ur for the radial component and uθ; for the tangential component of the velocity.

  3. 3.

    One could also write as \({\mathbf{a}} = \frac{{D\,{\mathbf{Q}}}}{Dt}\, = \,\frac{{\partial \,{\mathbf{Q}}}}{\partial t}\, + \,\left( {{\mathbf{Q}} \cdot \nabla } \right){\mathbf{Q}}\, = \,\rho \,{\mathbf{g}}\, - \,\frac{\nabla \,p}{\rho }\). In addition, one could also use V instead of Q. Hence \({\mathbf{a}} = \,\frac{{D\,{\mathbf{V}}}}{Dt}\,\, = \,\,\frac{{\partial {\mathbf{V}}}}{\partial t}\, + \,\left( {{\mathbf{V}} \cdot \nabla } \right)\,\,{\mathbf{V}}\, = \,\,\nabla \left[ {\Omega \,\, - \int {\frac{dp}{\rho }} } \right]\).

  4. 4.

    \(\frac{1}{{\left| {\nabla S} \right|}}\frac{\partial S}{{\partial t}} \equiv \frac{{\partial \left( {\frac{\nabla S}{{\left| {\nabla S} \right|}}} \right)}}{\partial t} \equiv \frac{{\partial {\mathbf{n}}}}{\partial t}\).

  5. 5.

    \(U_{0}\) or \(U_{\infty }\) is chosen here as appropriate for physical plausibility and for convenience.

  6. 6.

    Such approach is reminiscent of presently well-developed partition of unity distribution and shape functions in boundary element and finite element methods.

  7. 7.

    Reproduced qualitatively from Djojodihardjo et al. [1].

  8. 8.

    \(U \cdot Br \equiv\) Upper Boundary.

  9. 9.

    The detail is given in the referenced paper, Djojodihardjo et al. [2].

  10. 10.

    Now PT Dirgantara Indonesia.

  11. 11.

    For acceptance function, one may refer to Chen, XZ, Matsumoto, M, Kareem, A, Time Domain Flutter and Buffeting Response Analysis of Bridges, https://www3.nd.edu/~nathaz/journals/ (2000).

  12. 12.

    Such assumptions can be relieved, and similar expression can be obtained by superposing Eq. (11.17) with the internal problem inside the body and wing surface, as carried out in Djojodihardjo, RH and Widnall, SE, [1].

  13. 13.

    Further detail can be found in Djojodihardjo and Safari [69], Djojodihardjo [70], Djojodihardjo [71].

  14. 14.

    Which originated from Djojodihardjo [71] and Djjodihardjo and Safari [69].

  15. 15.

    Djojodihardjo et al. [3].

  16. 16.

    Not all the appendices and the equations elaborated in the referenced paper are reproduced here. Further details are given in Djojodihardjo, Sekar, Prananta [2].

    Other Appendices and related equations can be found in the referred document.

  17. 17.

    The integration \(\mathop {\int_{ - 1}^{1} {} }\limits_{\begin{subarray}{l} \text{singular} \\ {\text{integral}} \end{subarray} }\) signifies singular integral that should be dealt with following the established procedure.

Abbreviations

A; Aij:

Area of the surface element; matrix of velocity, influence coefficient

B i :

Total apparent downwash velocity

C ij :

Velocity potential influence coefficient

CL, \({C_M^{\prime}}\), ci, cm:

Lift and moment coefficients; sectional or two-dimensional lift and moment coefficients

c :

Half-chord

i, j, k :

Unit vectors in the x, y and z directions

Kv, Kv2:

Velocity kernel functions

KVx, KVy, KVxx, KVxy, KVyy:

First- and second-order derivatives of Kv

M x :

Area moment about the x axis

n, ν; n:

Unit normal vectors; normal coordinate

N, NC, NS:

Total number of surface elements, number of elements along the chord and number of elements along the semi-span

Q :

Velocity vector at a field point

R :

\(\left| {{\mathbf{x}} - {\mathbf{\xi }}} \right|\) scalar distance between a field and a source point

S(x,t) :

The surface of the wing

s:

Distance travelled by the wing in half-chord; chordwise coordinate along the surface

t; Δt:

Dimensionless time or time; time increment

U(t)); U0:

Freestream velocity; a reference velocity

W(x,t) :

The surface of the wake

x, ζ; x, y, z:

Coordinate vector of a point; its components

\(\alpha\) :

Angle of incidence

\(\Gamma\) :

Vortex strength, circulation

\(\theta\) :

Angle

\(\sigma ;\sigma_{x} ;\sigma_{xx}\) :

Doublet strength; its derivatives

\(\phi\) :

Velocity potential

o :

Centroid of a surface element

i, j, k :

Dummy indices; refer to element i, j, or k

x, y, z :

Refer to the x, y and z directions

/:

Lower surface

u :

Upper surface

s :

Step doublet distribution or the surface of the wing

w :

Surface of the wake

References

  1. Djojodihardjo, R.H., and Sheila E. Widnall. 1969. A numerical method for the calculation of nonlinear unsteady potential flow problems. AIAA Journal 7 (10), October.

    Google Scholar 

  2. Djojodihardjo, H., W.K. Sekar, and B.B. Prananta. 1992. Calculation of 3D unsteady subsonic flow with separation bubble using singularity method. In 18th, ICAS Congress, Bei**g.

    Google Scholar 

  3. Djojodihardjo, M. Akbar, L. Gunawan, and M. Kusni. 2010. Unified aerodynamic-acoustic formulation for aero-acoustic structure coupling. In 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, vol. 3, issue: Nice, France.

    Google Scholar 

  4. Haryanto, I., A preliminary study on buffeting problem utilizing dynamic response approach. In ICAS94-10.7.3, and 4.

    Google Scholar 

  5. Greidanus, J.H., A.I. van de Vooren, and H. Bergh. 1952. Experimental determination of the aerodynamic coefficients of an oscillating wing in incompressible two-dimensional flow. Repts, F-101 to F-104, National Luchtvaart Laboratorium.

    Google Scholar 

  6. Ransleben, G.E., and H.N. Abramson. 1962. Experimental determination of oscillatory lift and moment distributions of fully submerged flexible hydrofoils. Rept. 2, Contract Nonr-3335(00), Southwest Research Institute, San Antonio, Texas.

    Google Scholar 

  7. Spurck, J. 1963. Messungen der Aerodynamischen Beiwerte Schwingender Flugelprofil in Windkanal und Vergleich met der Theorie. NR. 29, Mitteilungen Max-Planck Institute, Gottingen.

    Google Scholar 

  8. Küssner, H.G. and G. von Gorup. 1960. Instationare Lineasierte Theorie der Flugelprofile endlicher Dicke in Inkompressibler Stromung. NR. 26, Mitteilungen Max-Planck Institute, Gottingen.

    Google Scholar 

  9. Hewson-Browne, R.C. 1963. The oscillation of a thick aerofoil in an incompressible flow. Quarterly Journal of Mechanics and Applied Mathematics 16: 79–92.

    Google Scholar 

  10. van de Vooren, A.I., and H. van de Vel. 1963. Unsteady profile theory in incompressible Flow. Rept. TW-17, Mathematics Institute, Rijksuniversiteit, Groningen, The Netherlands.

    Google Scholar 

  11. Giesing, J.P. 1968. Nonlinear two-dimensional unsteady potential flow with lift. Journal of Aircraft 5(2): 135–143.

    Google Scholar 

  12. Chen, C.F., and R.A. Wirtz. 1968. Second-order theory for flow past oscillating foils. AIAA Journal 6(8): 1556–1562.

    Google Scholar 

  13. Ashley, H., S.E. Widnall, and M.T. Landahl. 1965. New directions in lifting surface theory. AIAA Journal 3(1): 3–15.

    Google Scholar 

  14. Landahl, M.T., and V.J.E. Stark. 1968. Numerical lifting surface theory—Problems and progress. In AIAA Paper 68–72.

    Google Scholar 

  15. Miller, R.H. 1964a. Rotor blade harmonic loading. AIAA Journal 2(7): 1254–1269.

    Google Scholar 

  16. Miller, R.H. 1964b. Unsteady air loads on helicopter rotor blades. Journal of the Royal Aeronautical Society 68: 640.

    Google Scholar 

  17. Ashley, H. 1966. Machine Computation of Aerodynamic Loads in Linear and Nonlinear Situations. Rept. 66–5, AFOSR 66–1440, Fluid Dynamics Research Lab., Massachusetts Institute of Technology.

    Google Scholar 

  18. Hess, J.L., and A.M.O. Smith. 1966. Calculation of Potential Flow About Arbitrary Bodies. Progress in Aeronautical Sciences, vol. 8. Pergamon.

    Google Scholar 

  19. Rubbert, P.E. et al. 1967. A general method for determining the aerodynamic characteristics of fan-in-wing configuration. TR 67–61A, U. S. Army Aviation Materiel Lab.

    Google Scholar 

  20. Djojodihardjo, R.H. 1969. A Numerical Method for the Calculation of Nonlinear Unsteady Lifting Potential Flow Problems. Sc.D. thesis, Feb. Dept. of Aeronautics and Astronauics, Massachusetts Institute of Technology.

    Google Scholar 

  21. Hadamard, J. 1952. The Finite Part of an Infinite Simple Integral. Lectures on Cauchy’s Problem in Linear Partial Differential Equations, 133–141. Dover.

    Google Scholar 

  22. Mangier, K.W. 1952. Improper integrals in theoretical aerodynamics. C.P. 94, Aeronautical Research Council, Great Britain.

    Google Scholar 

  23. Timoshenko, S., D.H. Young, and W. Weaver. 1974. Vibration Problems in Engineering. New York: Wiley.

    Google Scholar 

  24. Watkins, C.E., H.L. Runyan, and D.S. Woolston. 1995. On the kernel function of the integral equations relating the lift and downwash distributions of oscillating finite wing in subsonic flow, NACA Rep. 1234.

    Google Scholar 

  25. Wagner, H. 1925. Uber die Entstehung des Dynamischen Auftriebes von Traflugeln. Zeitscrift fur Angewandte Maihematik und Mechanik 5(1), Feb.

    Google Scholar 

  26. Chen, X.Z., M. Matsumoto, and A. Kareem. 2000. Time domain flutter and buffeting response analysis of bridges. https://www3.nd.edu/~nathaz/journals/. Time Domain Flutter and Buffeting Response Analysis of Bridges.

  27. Jones, R.T. 1939. The unsteady lift of a finite wing. TN 682, NACA.

    Google Scholar 

  28. Garrick, I.E. 1957. Nonsteady Wing Characteristics. VII. Princeton, NJ: Princeton University Press.

    Google Scholar 

  29. Bratt, J.B. 1953. Flow patterns in the wake of oscillating airfoil. R & M 2773, Royal Aeronautical Establishment, Great Britain.

    Google Scholar 

  30. Jones, W.P. 1945. Aerodynamic forces on wings in nonuniform motion. R & M 2117, Aeronautical Research Council, Great Britain.

    Google Scholar 

  31. Chi, R.M. 1985. Separated flow unsteady aerodynamic theory. Journal of Aircraft 22 (11)

    Google Scholar 

  32. Ericsson, L.E., and J.P. Reding. 1981. Unsteady airfoil stall, Review and extension. AIAA Journal 8: 609–616.

    Google Scholar 

  33. Perumal, P.V.K., and F. Sisto. 1974. Lift and moment prediction for an oscillating airfoil with moving separation point. ASME Transaction, Journal of Engineering of Power 96: 372–378.

    Google Scholar 

  34. Dowell, E.H. 1977. A simplified theory of oscillating airfoil in transonic flow: Review and extention, AIAA Paper, 77–445, March.

    Google Scholar 

  35. Huber, T., B. Rochholz, and B. Laschka. 1991. Modelling of separated flow around oscillating cascade by classical singularity method. International Forum on Aerolasticity and Structural Dynamics, Aachen, June 3–6.

    Google Scholar 

  36. Djojodihardjo, H., W.K. Sekar, and B. Laschka. 1991. Calculation of pressure distribution on two dimensional wing in unsteady subsonic flow with separation bubble using kernel function method. International Forum on Aeroelasticity and Structural Dynamics, Aachen, Germany.

    Google Scholar 

  37. Bendat, J.S., and A.G. Piersol. 1971. Random Data: Analysis and Measrument Procedure. Canada: Wiley.

    Google Scholar 

  38. Laschka, B.1963. Zur Theorie der Harmonischschwingenden, Tragenden Flaeche bel Unterschallanstroemung, Zeitschrift fuer Flugwissen schaften, Braunschweig.

    Google Scholar 

  39. Küssner, H.G. 1940. Allgemeine Tragflachentheorie. Luftfahrtforschung 17, 370–378.

    Google Scholar 

  40. Watkins, C.E., D.S. Woolston, and H.J. Cunningham. 1960. A systematic kernel function procedures for determining aerodynamics forces on oscillating or steady finite wing at subsonic speed, NASA TRR-48.

    Google Scholar 

  41. Wrobel, L.C. 2003. The Boundary Element Method, Volume 1, Applications in Thermo-Fluids and Acoustics. Wiley.

    Google Scholar 

  42. Boyden, R.P., and W.G. Johson. 1982. Result of buffet tests in a cryogenic wind tunnel. NASA-TM 84520, September.

    Google Scholar 

  43. Djojodihardjo, H., and W.K. Sekar. 1991. Calculation of unsteady aerodynamics load on a finite span wing with separated region using strip theory approach. IPTN Internal Report.

    Google Scholar 

  44. Akbar, M., L. Gunawan, and M. Kusni. 2010. Calculation of unsteady aerodynamic loads on oscillating lifting surface using doublet point method. Paper 128, Proceedings, Regional Conference on Mechanical and Aerospace Technology Bali, February 9–10.

    Google Scholar 

  45. Ashley, H., and M.T. Landahl. 1965. Aerodynamics of Wings and Bodies. Reading, MA: Addison & Wesley.

    Google Scholar 

  46. Djojodihardjo, H., and W.K. Sekar. 1993. Flutter calculation of two and three dimensional subsonic wing with separation bubble as preliminary estimation of buffeting problem. In The International Forum on Aeroelasticity and Structural Dynamics, Strasbourg, France, May 24–26.

    Google Scholar 

  47. Djojodihardjo, H., W.K. Sekar, and E. Suleman. 1993. Flutter and dynamic response calculation of unsteady separated flow using singularity method or preliminary estimation of buffeting problem. In Symposium of The Advances in Aerospace Sciences, Stanford, CA, USA, September 23–24.

    Google Scholar 

  48. Försching, H. 1981. Aeroelastic Buffeting Prediction Techniques—A General Review. DFVLR.

    Google Scholar 

  49. Chyu, W.J., and M.K. Au-Yang. 1972. Random response of rectanguler panels to the pressure field beneath a turbulent boundary layor in subsonic flows. NASA TN D-6970, October.

    Google Scholar 

  50. Ueda, T., and E.H. Dowell. 1982. A new solution method for lifting surfaces in subsonic flow. AIAA Journal 20: 348–355.

    Google Scholar 

  51. Zwaan, R.J. 1981. Aeroelasticity of aircraft. Lecture Notes, Special Lecture, Short Course offered at Institut Teknologi Bandung, Indonesia, Lecture Notes delivered at Special Meeting at ITB in August 1981 (private collection).

    Google Scholar 

  52. Bisplinghoff, R.L., H. Ashley, and Halfman. 1995. Aerolasticity. Reading, MA: Addison Wesley.

    Google Scholar 

  53. Blevins, R.D. 1977. Flow-Induced Vibration. van Nostrand Reinhold Co.

    Google Scholar 

  54. Bull, M.K. 1967. Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. Journal of Fluid Mechanics 28(4): 719–754.

    Google Scholar 

  55. Djojodihardjo, H., and E. Tendean. 2004. A computational technique for the dynamics of structure subject to acoustic excitation. In Paper IAC-04-3I.2.09. Presented at the 55th International Astronautical Congress, 4–8 October, Vancouver, Canada.

    Google Scholar 

  56. Djojodihardjo, H., and I. Safari. 2005. Further development of the computational technique for dynamics of structure subjected to acoustic excitation. In Paper IAC-05-C2.2.08, presented at the 56th International Astronautical Congress, 17–21 October, Fukuoka Japan.

    Google Scholar 

  57. Djojodihardjo, H., and I. Safari. 2006. Unified computational scheme for acoustic aeroelastomechanic interaction. In Paper IAC-06-C2.3.09, presented at the 57th International Astronautical Congress 2006, 1–6 October, Valencia Spain.

    Google Scholar 

  58. Djojodihardjo, H. 2007a. BE-FE coupling computational scheme for acoustic effects on aeroelastic structures. In Paper IF-086, Proceedings Of The International Forum on Aeroelasticity and Structural Dynamics, held at the Royal Institute of Technology (KTH), Stockholm, Sweden, 18–20 June.

    Google Scholar 

  59. Djojodihardjo, H. 2007b. BEM-FEM acoustic-structural coupling for spacecraft structure incorporating treatment of irregular frequencies. In Paper IAC.07-C2.3.4, IAC Proceedings, presented at the 58th International Astronautical Congress, 23–28 September 2007, Hyderabad, India.

    Google Scholar 

  60. Djojodihardjo, H. 2008. Unified BE-FE aerodynamic-acoustic-structure coupling scheme for acoustic effects on aeroelastic structures. In Paper I-586, 26th International Congress of the Aeronautical Sciences, 14–19 September, Anchorage, Alaska, USA.

    Google Scholar 

  61. Holström, F. 2001. Structure-acoustic analysis using BEM/FEM; Implementation in MATLAB®. Master’s Thesis, Copyright © 2001 by Structural Mechanics & Engineering Acoustics, LTH, Sweden, Printed by KFS i Lund AB, Lund, Sweden, May, Homepage: http://www.akustik.lth.

  62. Marquez, A., S. Meddahi, S., and V. Selgas. 2004. A new BEM–FEM coupling strategy for two-dimensional fluid–solid interaction problems. Journal of Computational Physics, 199: 205–220.

    Google Scholar 

  63. Huang, X.Y. 1987. Active control of aerofoil flutter. AIAA Journal 25 (8).

    Google Scholar 

  64. Lu, P.J., and L.J. Huang. 1992. Flutter suppression of thin airfoils using active acoustic excitations. AIAA Journal 30 (12), December.

    Google Scholar 

  65. Nagai, K., K. Toshimitsu, and M. Namba. 1996. Active control of cascade flutter by means of sound waves from duct wall sources. JSME International Journal, Series B 39 (3): 608–614.

    Google Scholar 

  66. Morino, L., and C.C. Kuo. 1974. Subsonic potential aerodynamics for complex configurations: A general theory. AIAA Journal 12 (2), February.

    Google Scholar 

  67. Zingel, H. 1986. Zur Bestimmung des aeroelastischen Verhaltens von Auftriebssystemen infolge von stromungsablosung. DFVLR.

    Google Scholar 

  68. Kreyszig, E. 2006. Advanced Engineering Mathematics, 9th ed. Wiley.

    Google Scholar 

  69. Djojodihardjo, H., and I. Safari. 2013. BEM-FEM coupling for acoustic effects on aeroelastic stability of structures. Computer Modeling in Engineering and Sciences 91 (3): 205–234.

    Google Scholar 

  70. Djojodihardjo, H. 2013. Unified aerodynamic-acoustic formulation for aero-acoustic structure coupling. JMEA 3 (4)

    Google Scholar 

  71. Djojodihardjo, H. 2015. Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation. Acta Astronautica 108: 129–145.

    Google Scholar 

  72. Becker, J., and A. Gravelle. 1985. Some results of experimental and analytical buffeting investigations on a delta wing. In International Symposium on Aeroelasticity, Aachen, April 1–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: For Case Study II—Calculation of 3D Unsteady Subsonic Flow with Separation Bubble Using Singularity Method

Appendix: For Case Study II—Calculation of 3D Unsteady Subsonic Flow with Separation Bubble Using Singularity Method

1.1 The Singular Part of Kernel Functions

Noting the complexity of the kernel functions, it is intended to integrate them using numerical approach. It is obvious that the singularity contained in the kernel functions will tend to spoil the numerical integration if they are not carefully treated. The usual technique to take care of this problem is to isolate the region in the vicinity of the singular point, and to integrate it in an analytical manner applying a suitable limiting process. The remaining regular kernel can then be easily and accurately integrated using a standard numerical quadrature. The limiting processes for the second and third kernels are well documented in many literatures. Such procedure leads to Eqs. (11.98) and (11.99). Afterward, the singularities of the first and fourth kernel are presented.

The integral in the chordwise direction will contain singularities if η and η ̓take the same values. This situation is closely related to the integration technique applied for the spanwise direction. The singular part of the first kernel can be examined to consist of some poles and a logarithmic function, since the Bessel function has a logarithmic behaviour for small arguments. This singular part is [42]

$$K_{{1s}} \left( {\xi ,\eta ;\xi ^{'} ,\eta ^{'} } \right) = \frac{{e^{{ - {\text{i}}k\left( {\xi - \xi ^{'} } \right)}} }}{{s^{2} }}\left( \begin{gathered} - \frac{1}{{\left( {\eta - \eta ^{'} } \right)^{2} }}\left| {1 + \frac{{\xi - \xi ^{'} }}{{r^{'} }}} \right| \hfill \\ + \frac{{ik}}{{r^{'} }} - \frac{{k^{2} }}{2}\ln \left| {r^{'} - \left( {\xi - \xi ^{'} } \right)} \right| \hfill \\ \end{gathered} \right)$$
(11.191)

The singular part of the fourth kernel has a less complexity since the singularity is caused only by the r ̓. Consequently it produces some poles, which can be taken separately as

$$ K_{1s} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) \approx \frac{1}{2\pi }\left[ { - \frac{ik}{{\beta^{2} \left| {\xi - \xi^{^{\prime}} } \right|}}\left( {1 - \frac{{M\left( {\xi - \xi^{^{\prime}} } \right)}}{{\left| {\xi - \xi^{^{\prime}} } \right|}}} \right)} \right] $$
(11.192)

If these two singular parts obtained are subtracted from the original kernels, the rest will become regular functions which facilitate the numerical treatment of them. Proceeding along this line, then the non-singular of the first and fourth kernel are

$$ K_{1ns} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) = K_{1} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) - K_{1s} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) $$
(11.193)
$$ K_{4ns} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) = K_{4} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) - K_{4s} \left( {\xi ,\eta ;\xi^{^{\prime}} ,\eta^{^{\prime}} } \right) $$
(11.194)

1.2 Integration Along the Chordwise Direction

The integration of the first kernel is worked out exactly in the same manner as the one in Laschka [42], where the singular parts are treated analytically and the rest numerically. Proceeding along Laschka’s approach the singular integral is divided into three partsFootnote 15

$$\begin{gathered} f_{{1r}} \left( {\xi ,\eta ;\xi ^{'} ,\eta ^{'} } \right) = \frac{1}{{2\pi }}\sum\limits_{{r = 0}}^{R} {\left\{ {\mathop {\lim }\limits_{{\varepsilon \to 0}} \left[ \begin{gathered} \frac{2}{\varepsilon }a_{r}^{*} \left( \eta \right)f_{{11r\,s}} \left( {\xi ,\eta ;\eta ^{'} } \right) \hfill \\ - \int\limits_{\begin{subarray}{l} - 1 \\ \text{singular} \\ {\text{integral}} \end{subarray} }^{1} {\frac{{a*_{r} \left( {\eta ^{'} } \right)}}{{\left( {\eta - \eta ^{'} } \right)}}} f_{{11r\,\,ns}} \left( {\xi ,\eta ;\eta ^{'} } \right)d\eta ^{'} \hfill \\ \end{gathered} \right]} \right\}} \\ + \int\limits_{{ - 1}}^{1} {a_{r}^{*} } \left( {\eta ^{'} } \right)\ln \left| {\eta - \eta ^{'} } \right|f_{{12r}} \left( {\xi ,\eta ;\eta ^{'} } \right)d\eta ^{'} + \int\limits_{{ - 1}}^{1} {a_{r}^{*} } \left( {\eta ^{'} } \right)f_{{13r}} \left( {\xi ,\eta ;\eta ^{'} } \right)d\eta ^{'} \\ \end{gathered}$$
(11.195)

The Gauss-Jacobian Quadrature is employed for the integration of the non-singular kernel times the series expansion. The quadrature chosen takes the advantage of the series expansion, hr(X), as the weighting function,

$$ L\left( {r,X} \right) = \int\limits_{0}^{1} {h_{r} } \left( {X^{^{\prime}} } \right)F\left( {X,\eta ;X^{^{\prime}} ,\eta^{^{\prime}} } \right)dX^{^{\prime}} = \sum\limits_{j = 0}^{J} {B_{rj} F} \left( {X,\eta ;X_{j} ,\eta^{^{\prime}} } \right) $$
(11.196)

where

$$ B_{rJ} = \frac{{\cos \left( {r\phi_{j} } \right)\cos \left( {\left( {r + 1} \right)\phi_{j} } \right)}}{J + 1} $$
(11.197)

The components of \(f_{1r} \left( {\xi ,\eta ;\eta } \right)\) are then evaluated one by one using this formula as

$$ f_{11rs} \left( {\xi ,\eta ;\eta^{^{\prime}} } \right) = \sum\limits_{j = 0}^{J} {B_{rj} } e^{{ - {\text{i}}k\frac{c\left( \eta \right)}{s}\left( {X - X{}_{j}} \right)}} \left( {1 + \frac{{X - X{}_{j}}}{{R_{j} }}} \right) $$
(11.198)
$$\begin{aligned} f_{{12r\nu s}} \left( {\xi ,\eta ;\eta ^{'} } \right) & = f_{{1rs}} \left( {\xi ,\eta ;\eta ^{'} } \right) \\ & + \left( {\frac{{dh_{r} \left( X \right)}}{{dX^{'} }} + ik\frac{{c\left( \eta \right)}}{s}h_{r} \left( {X^{'} } \right)} \right) \\ & \quad \left( {\frac{{\beta s}}{{c\left( \eta \right)}}} \right)^{2} \left( {\eta - \eta ^{'} } \right)^{2} \ln \left| {\eta - \eta ^{'} } \right| \\ \end{aligned}$$
(11.199)
$$\begin{aligned} f_{{12r}} \left( {\xi ,\eta ;\eta ^{'} } \right) & = - k^{2} \sum\limits_{{j = 0}}^{J} {B_{{rj}} } e^{{ - {\text{i}}k\frac{{c\left( \eta \right)}}{s}\left( {X - X{}_{j}} \right)}} \\ & \quad + \left( {\frac{{\beta s}}{{c\left( \eta \right)}}} \right)^{2} \left[ {\frac{{dh_{r} \left( X \right)}}{{dX^{'} }} + ik\frac{{c\left( \eta \right)}}{s}h_{r} \left( X \right)} \right] - 2ik\frac{s}{{c\left( {\eta ^{'} } \right)}}h_{r} \left( X \right) \\ \end{aligned}$$
(11.200)

and

$$ \begin{aligned} f_{13r} \left( {\xi ,\eta ;\eta^{^{\prime}} } \right) & = \frac{{f_{1r\nu s} \left( {\xi ,\eta ;\eta^{^{\prime}} } \right)}}{{\left( {\eta - \eta^{^{\prime}} } \right)^{2} }} - \ln \left| {\eta - \eta^{^{\prime}} } \right|f_{2r} \left( {\xi ,\eta ;\eta^{^{\prime}} } \right) \\ & - \frac{1}{{\left( {\eta - \eta^{^{\prime}} } \right)^{2} }}\sum\limits_{j = 0}^{J} {B_{rj} } e^{{ - {\text{i}}k\frac{c\left( \eta \right)}{s}\left( {X - X{}_{j}} \right)}} \\ & \left\{ \begin{gathered} k\left| {\eta - \eta^{^{\prime}} } \right|\left[ \begin{gathered} K_{1} \left( {k\left| {\eta - \eta^{^{\prime}} } \right|} \right) - i + \frac{\pi i}{2}\left( {I_{1} \left( {k\left| {\eta - \eta^{^{\prime}} } \right|} \right) - L_{1} k\left| {\eta - \eta^{^{\prime}} } \right|} \right) \hfill \\ + i\int\limits_{0}^{U \cdot Br} {\frac{\tau }{{\left( {1 + \tau^{2} } \right)^{\frac{1}{2}} }}} e^{{{\text{2i}}k\left( {\eta - \eta ^{\prime}} \right)\tau }} d\tau \hfill \\ \end{gathered} \right] \hfill \\ + \frac{{X - X_{j} }}{R}e^{{{\text{ - i}}k\frac{c\left( \eta \right)}{{s\beta^{2} }}\left( {X - X_{j} - MR_{j} } \right)}} \hfill \\ \end{gathered} \right\} \\ \end{aligned} $$
(11.201)

where the upper boundary of the integral becomes

$$ U \cdot Br = \frac{{\left( {X - X^{^{\prime}} - MR} \right)}}{{\beta^{2} \left| {\eta - \eta^{^{\prime}} } \right|}}\frac{{c\left( {\eta^{^{\prime}} } \right)}}{s} $$
(11.202)

and

$$ R = \left[ {\left( {X - X^{^{\prime}} } \right)^{2} + \beta^{2} \frac{{s^{2} }}{{c^{2} \left( \eta \right)}}\left( {\eta - \eta^{^{\prime}} } \right)^{2} } \right]^{\frac{1}{2}} $$
(11.203)
$$ X^{^{\prime}} = \frac{{X^{^{\prime}} - X_{{{\text{LE}}}} }}{c\left( \eta \right)} = \frac{1}{2}\left( {1 - \cos \left( {\phi^{^{\prime}} } \right)} \right) $$
(11.204)
$$ \phi^{^{\prime}} = \frac{j\pi }{{J + 1}} $$
(11.205)
$$ j = 0,1,2, \ldots j $$
(11.206)

Following Watkins et al.[54], the approximation of the integrand is carried out by expansion like,

$$ \frac{\tau }{{\left( {1 + \tau^{2} } \right)^{\frac{1}{2}} }} = 1 - 1.101e^{ - 0.329\tau } - 0.899e^{ - 1.4067\tau } - 0.09480933e^{ - 0.329\tau } \sin \pi \tau $$
(11.207)

Using this expression the integral appeared in Eq. (11.201) could be worked out.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djojodihardjo, H. (2023). Unsteady Aerodynamics with Case Studies. In: Introduction to Aeroelasticity . Springer, Singapore. https://doi.org/10.1007/978-981-16-8078-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8078-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8077-9

  • Online ISBN: 978-981-16-8078-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation