Selenium-Mediated Regulation of Antioxidant Defense System and Improved Heavy Metals Tolerance in Plants

  • Chapter
  • First Online:
Antioxidant Defense in Plants

Abstract

Being stalkless organism, agricultural crops are constantly confronted by environmental stresses such as heavy metals (HMs) which severely affect the growth, productivity and thus yield losses. To minimize the HMs-induced phytotoxic effects and improve the HM tolerance by plants, the utilization of beneficial elements such as selenium (Se) as antioxidant defense agent can be effective solutions. At low concentrations, Se compounds (selenite or selenate) can promote plant growth and stress tolerance. The key mechanism is that lower Se doses can activate the antioxidant defense capacity (by stimulating the activities of enzymatic or nonenzymatic antioxidants); reduce the extra accumulation of reactive oxygen species, malondialdehyde (stress marker); and scavenge associated damages due to oxidative stress as well as membrane lipid peroxidation, ultimately enhancing the plant tolerance against HMs stress. Here, we have overviewed the available literature concerning the physiological roles of Se species via the involvement of enzymatic or nonenzymatic antioxidant systems in the alleviation of HMs-induced toxic effects in plants. The aim of the present chapter is to apprise our understandings regarding the beneficial and protective roles of inorganic Se forms (selenite and selenate) on the mitigation of HM stress (via involving antioxidant defense systems) in different plants. In this way, the exploitation of Se as antioxidative agent in HMs-susceptible crops can be ideal strategy to ameliorate HMs stress and Se-exposed plants can display improved growth under environmental stress conditions. Hence, Se-supplementation should be focused to develop stress-tolerant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad R, Ali S, Hannan F, Rizwan M, Iqbal M, Hassan Z, Akram NA, Maqbool S, Abbas F (2017) Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environ Sci Pollut Res 24(9):8814–8824

    Article  CAS  Google Scholar 

  • Ali S, ** R, Gill RA, Mwamba TM, Zhang N, Ulhassan Z, Islam F, Ali S, Zhou WJ (2018a) Beryllium stress-induced modifications in antioxidant machinery and plant ultrastructure in the seedlings of black and yellow seeded oilseed rape. Biomed Res Int 2018:1615968. https://doi.org/10.1155/2018/1615968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Gill RA, Mwamba TM, Zhang N, Lv MT, Ulhassan Z, Islam F, Zhou WJ (2018b) Differential cobalt-induced effects on plant growth, ultrastructural modifications, and antioxidative response among four Brassica napus L. cultivars. Int J Environ Sci Technol 15(12):2685–2700

    Article  CAS  Google Scholar 

  • Ali S, Gill RA, Ulhassan Z, Najeeb U, Kanwar MK, Abid M, Mwamba TM, Huang Q, Zhou W (2018c) Insights on the responses of Brassica napus cultivars against the cobalt-stress as revealed by carbon assimilation, anatomical changes and secondary metabolites. Environ Exp Bot 156:183–196

    Article  CAS  Google Scholar 

  • Alves LR, Prado ER, de Oliveira R, Santos EF, de Souza IL, Dos Reis AR, Azevedo RA, Gratão PL (2020) Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology 29(5):594–606

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA (2021) Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Sci 11:2248. https://doi.org/10.3389/fpls.2020.587785

    Article  Google Scholar 

  • Balakhnina TI, Nadezhkina ES (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russian. J Plant Physiol 64(2):215–223

    CAS  Google Scholar 

  • Chang TC, You SJ, Yu BS, Chen CM, Chiu YC (2009) Treating high-mercury-containing lamps using full-scale thermal desorption technology. J Hazard Mater 162:967–972

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Xu J, Xu Y, Wang K, Cao B, Xu K (2019) Alleviating effects of silicate, selenium, and microorganism fertilization on lead toxicity in ginger (Zingiber officinale Roscoe). Plant Physiol Biochem 145:153–163

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–185

    Article  CAS  Google Scholar 

  • Ding Y, Wang R, Guo J, Wu F, Xu Y, Feng R (2015) The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice. Environ Sci Pollut Res 22(7):5111–5123

    Article  CAS  Google Scholar 

  • Ding Y, Wang Y, Zheng X, Cheng W, Shi R, Feng R (2017) Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris. Ecotoxicol Environ Saf 142:207–215

    Article  CAS  PubMed  Google Scholar 

  • Feng R, Wei C, Tu S, Tang S, Wu F (2011) Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions. Microchem J 97(1):57–61

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013a) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S, Ding Y, Wang R, Guo J (2013b) The uptake and detoxification of antimony by plants: a review. Environ Exp Bot 96:28–34

    Article  CAS  Google Scholar 

  • Feng R, Liao G, Guo J, Wang R, Xu Y, Ding Y, Mo L, Fan Z, Li N (2016) Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environ Exp Bot 122:29–38

    Article  CAS  Google Scholar 

  • Feng R, Zhao P, Zhu Y, Yang J, Wei X, Yang L, Liu H, Rensing C, Ding Y (2021) Application of inorganic selenium to reduce accumulation and toxicity of metals and metalloids in plants: the main mechanisms, concerns, and risks. Sci Total Environ 2010:144776. https://doi.org/10.1016/j.scitotenv.2020.144776

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35:199–201

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, McGrath SP, Van Hoewyk D, Pilon-Smits EA (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153(4):1630–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Gupta M (2016) Alleviation of selenium toxicity in Brassica juncea L.: salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts. Protoplasma 253(6):1515–1528

    Article  CAS  PubMed  Google Scholar 

  • Hamid Y, Tang L, Hussain B, Usman M, Liu L, Ulhassan Z, He Z, Yang X (2021) Sepiolite clay: a review of its applications to immobilize toxic metals in contaminated soils and its implications in soil-plant system. Environ Technol Innov 23:101598. https://doi.org/10.1016/j.eti.2021.101598

    Article  CAS  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. S Afr J Bot 119:1–10

    Article  CAS  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R et al (2019) Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot 161:180–192

    Article  CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149(2):248–261

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Borhannuddin Bhuyan MHM, Anee TI, Parvin K, Nahar K, Al Mahmud J, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384. https://doi.org/10.3390/antiox8090384

    Article  CAS  PubMed Central  Google Scholar 

  • Hassan Z, Ali S, Ahmad R, Rizwan M, Abbas F, Yasmeen T, Iqbal M (2017a) Biochemical and molecular responses of oilseed crops to heavy metal stress. In: Oilseed crops: yield and adaptations under environmental stress. John Wiley & Sons, pp 236–248. https://doi.org/10.1002/9781119048800.ch13

    Chapter  Google Scholar 

  • Hassan Z, Ali S, Rizwan M, Ibrahim M, Nafees M, Waseem M (2017b) Role of bioremediation agents (Bacteria, Fungi, and Algae) in alleviating heavy metal toxicity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-10-4059-7_27

    Chapter  Google Scholar 

  • Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, Cao M, **ong S, Tu S (2021) Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mater 401:123393

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Mumtaz M, Manzoor S, Shuxian L, Ahmed I, Skalicky M, Brestic M, Rastogi A, Ulhassan Z, Shafiq I, Allakhverdiev SI (2021a) Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol Biochem 159:43–52

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Ulhassan Z, Brestic M, Zivcak M, Zhou W, Allakhverdiev SI, Yang X, Safdar ME, Yang W, Liu W (2021b) Photosynthesis research under climate change. Photosynth Res 1–15. https://doi.org/10.1007/s11120-021-00861-z

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li H, Li YF, Zhao J, Guo J, Wang R, Li B, Zhang Z, Gao Y (2018) Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): a combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J Trace Elem Med Biol 50:435–440

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lv H, Yang N, Li Y, Liu B, Rensing C, Dai J, Fekih IB, Wang L, Mazhar SH, Kehinde SB (2019) Roles of root cell wall components and root plaques in regulating elemental uptake in rice subjected to selenite and different speciation of antimony. Environ Exp Bot 163:36–44

    Article  CAS  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Mayland HF, Gough LP, Stewart KC (1991). Chapter E: selenium mobility in soils and its absorption, translocation, and metabolism in plants. 55–64

    Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman MM, Siddiqui MN, Fujita M, Tran LSP (2020) Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. J Hazard Mater 2020:122572. https://doi.org/10.1016/j.jhazmat.2020.122572

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147(1):320–328

    Article  CAS  PubMed  Google Scholar 

  • Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J (2020) Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Chemosphere 250:126308. https://doi.org/10.1016/j.chemosphere.2020.126308

    Article  CAS  PubMed  Google Scholar 

  • Natasha, Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  CAS  PubMed  Google Scholar 

  • Nazir MM, Ulhassan Z, Zeeshan M, Ali S, Gill MB (2020) Toxic metals/metalloids accumulation, tolerance, and homeostasis in Brassica oilseed species. In: Hasanuzzaman M (ed) the plant family brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_13

    Chapter  Google Scholar 

  • Pereira AS, Dorneles AOS, Bernardy K, Sasso VM, Bernardy D, Possebom G, Rossato LV, Dressler VL, Tabaldi LA (2018) Selenium and silicon reduce cadmium uptake and mitigate cadmium toxicity in Pfaffia glomerata (Spreng.) Pedersen plants by activation antioxidant enzyme system. Environ Sci Pollut Res 25(19):18548–18558

    Article  CAS  Google Scholar 

  • Qingqing H, Yiyun L, Xu Q, Lijie Z, Xuefeng L, Yingming X (2019) Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems. Ecotoxicol Environ Saf 168:486–494

    Article  PubMed  CAS  Google Scholar 

  • Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X (2021) Cadmium uptake and translocation: synergetic roles of selenium and silicon in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 273:129690. https://doi.org/10.1016/j.chemosphere.2021.129690

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, ur Rehman, M.Z., & Maqbool, A. (2019) A critical review on the effects of zinc at toxic levels of cadmium in plants. Environ Sci Pollut Res 26(7):6279–6289

    Article  CAS  Google Scholar 

  • Salam A, Khan AR, Liu L, Yang S, Azhar W, Ulhassan Z, Zeeshan M, Wu J, Fan X, Gan Y (2021) Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J Hazard Mater 423:127021. https://doi.org/10.1016/j.jhazmat.2021.127021

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol 213(4):1582–1596. https://doi.org/10.1111/nph.14378

    Article  CAS  PubMed  Google Scholar 

  • Sheteiwy MS, Ali DFI, **ong YC, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M, Sharma A (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21(1):1–21

    Article  CAS  Google Scholar 

  • Silva VM, Boleta EHM, Lanza MGDB, Lavres J, Martins JT, Santos EF, dos Santos FLM, Putti FF, Junior EF, White PJ, Broadley MR et al (2018) Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environ Exp Bot 150:172–182. https://doi.org/10.1016/j.envexpbot.2018.03.020

    Article  CAS  Google Scholar 

  • Silva VM, Rimoldi Tavanti RF, Gratao PL, Alcock TD, dos Reis AR (2020) Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (Vigna unguiculata (L.) walp) plants. Ecotoxicol Environ Saf 201:110777. https://doi.org/10.1016/j.ecoenv.2020.110777

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM (2019) Management of chromium (VI) toxicity by calcium and sulfur in tomato and brinjal: implication of nitric oxide. J Hazard Mater 373:212–223

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Hamid Y, Liu D, Shohag MJI, Zehra A, He Z, Feng Y, Yang X (2020) Foliar application of zinc and selenium alleviates cadmium and lead toxicity of water spinach–Bioavailability/cytotoxicity study with human cell lines. Environ Int 145:106122. https://doi.org/10.1016/j.envint.2020.106122

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Biol 51(1):401–432

    Article  CAS  Google Scholar 

  • Tran TAT, Dinh QT, Cui Z, Huang J, Wang D, Wei T, Liang D, Sun X, Ning P (2018) Comparing the influence of selenite (Se4+) and selenate (Se6+) on the inhibition of the mercury (Hg) phytotoxicity to pak choi. Ecotoxicol Environ Saf 147:897–904

    Article  CAS  PubMed  Google Scholar 

  • ul Hassan Z, Ali S, Rizwan M, Hussain A, Akbar Z, Rasool N, Abbas F (2017a) Role of Zinc in alleviating heavy metal stress. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-58841-4_14

    Chapter  Google Scholar 

  • ul Hassan Z, Ali S, Rizwan M, Ali Q, Haider MZ, Adrees M, Hussain A (2017b) Role of Iron in alleviating heavy metal stress. In: Naeem M et al (eds) Essential Plant Nutrients. Springer International Publishing AG, pp 335–350. https://doi.org/10.1007/978-3-319-58841-4_13

    Chapter  Google Scholar 

  • Ulhassan Z, Ali S, Gill RA, Mwamba TM, Abid M, Li L, Zhang N, Zhou W (2018) Comparative orchestrating response of ; oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physio-chemical, ultrastructural and molecular profiling. Ecotoxicol Environ Saf 161:634–647

    Article  CAS  PubMed  Google Scholar 

  • Ulhassan Z, Gill RA, Ali S, Mwamba TM, Ali B, Wang J, Huang Q, Aziz R, Zhou W (2019a) Dual behavior of selenium: insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. Chemosphere 225:329–341

    Article  CAS  PubMed  Google Scholar 

  • Ulhassan Z, Huang Q, Gill RA, Ali S, Mwamba TM, Ali B, Hina F, Zhou W (2019b) Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis, and antioxidant machinery. BMC Plant Biol 19:507. https://doi.org/10.1186/s12870-019-2110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulhassan Z, Gill RA, Huang H, Ali S, Mwamba TM, Ali B, Huang Q, Hamid Y, Khan AR, Wang J, Zhou W (2019c) Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiol Biochem 145:142–152

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Yu Y, Wang Q, Qiao Y, Li H (2016) Cadmium uptake dynamics and translocation in rice seedling: influence of different forms of selenium. Ecotoxicol Environ Saf 133:127–134

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Wang K, Liu Z, Yu Y, Wang Q, Li H (2019) Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res 26(16):16220–16228

    Article  CAS  Google Scholar 

  • Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Frontiers. Plant Sci 7:1875

    Google Scholar 

  • Wu C, Dun Y, Zhang Z, Li M, Wu G (2020) Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicol Environ Saf 190:110091

    Article  CAS  PubMed  Google Scholar 

  • **e X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 2019:9732325. https://doi.org/10.1155/2019/9732325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Ulhassan Z, Shah AM, Khan AR, Azhar W, Hamid Y, Hussain S, Sheteiwy MS, Salam A, Zhou W (2021) Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiol Biochem 166:1001–1013. https://doi.org/10.1016/j.plaphy.2021.07.013

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Qi Z, Li M, Ahammed GJ, Chu X, Zhou J (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol Environ Saf 169:911–917

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZW, Dong YY, Feng LY, Deng ZL, Xu Q, Tao Q, Wang CQ, Chen YE, Yuan M, Yuan S (2020) Selenium enhances cadmium accumulation capability in two mustard family species—Brassica napus and B. juncea. Plan Theory 9(7):904

    CAS  Google Scholar 

  • Zhang J, Hamza A, **e Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S (2021) Arsenic transport and interaction with plant metabolism: clues for improving agricultural productivity and food safety. Environ Pollut 290:117987. https://doi.org/10.1016/j.envpol.2021.117987

    Article  CAS  PubMed  Google Scholar 

  • Zhou XB, Gao AX, Chengming Z, Xu WH, Shi XJ (2017) Exogenous selenium alleviates mercury toxicity by preventing oxidative stress in rice (Oryza sativa) seedlings. Int J Agric Biol 19:1593–1600

    CAS  Google Scholar 

  • Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J (2021) Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties. J Hazard Mater 402:123546

    Article  CAS  PubMed  Google Scholar 

  • Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res 193(1):44–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulhassan, Z. et al. (2022). Selenium-Mediated Regulation of Antioxidant Defense System and Improved Heavy Metals Tolerance in Plants. In: Aftab, T., Hakeem, K.R. (eds) Antioxidant Defense in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-7981-0_16

Download citation

Publish with us

Policies and ethics

Navigation