Heat Transfer Enhancement in the Micro Channel Heat Sinks

  • Chapter
  • First Online:
Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 131))

  • 318 Accesses

Abstract

Although the various structures of the heat sinks are useful to improve heat dissipation, nanofluids flowing through the heat sink expedite the heat transfer significantly. The relationship between the relative roughness height and the Nusselt number is taken into account in the section. The relationship between the mass flow rates of the nanofluids and the heat transfer coefficient is presented. Also, the relationship between entropy generation of the nanofluids, flow direction, and the ratio of fin length to fin interval are included in the section. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300

    Article  CAS  Google Scholar 

  2. Karoly R, Dumitru CD (2014) Management of a power system based on renewable energy. Procedia Technol 12:693–697

    Article  Google Scholar 

  3. Nassar IA, Hossam K, Abdella MM (2019) Economic and environmental benefits of increasing the renewable energy sources in the power system. Energy Rep 5:1082–1088

    Article  Google Scholar 

  4. Ameel TA, Warrington RO, Wegeng RS, Drost MK (1997) Miniaturization technologies applied to energy systems. Energy Convers Manage 38:969–982

    Article  CAS  Google Scholar 

  5. Lakshminarayanan V, Sriraam N (2014) The effect of temperature on the reliability of electronic components. In: IEEE CONECCT 2014–2014 IEEE international conference on electrical, computer and communication technologies, pp 1–6

    Google Scholar 

  6. Kandlikar SG, Grande WJ (2002) Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. ASME Int Mech Eng Congr Expo Proc

    Google Scholar 

  7. Mehendale SS, Jacobi AM, Shah RK (2000) Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl Mech Rev 53:175–193

    Article  Google Scholar 

  8. Obot NT (2002) Toward a better understanding of friction and heat/mass transfer in microchannels—a literature review. Microscale Thermophys Eng 6:155–173

    Article  Google Scholar 

  9. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett EDL 2:126–129

    Article  Google Scholar 

  10. Missaggia LJ, Walpole JN, Liau ZL, Phillips RJ (1989) Microchannel heat sinks for two-dimensional high-power-density diode laser arrays. IEEE J Quantum Electron 25:1988–1992

    Article  CAS  Google Scholar 

  11. Peng XF, Peterson GP (1996) Forced convection heat transfer of single-phase binary mixtures through microchannels. Exp Therm Fluid Sci 12:98–104

    Article  CAS  Google Scholar 

  12. Judy J, Maynes D, Webb BW (2002) Characterization of frictional pressure drop for liquid flows through microchannels. Int J Heat Mass Transfer 45:3477–3489

    Google Scholar 

  13. Agostini B, Watel B, Bontemps A, Thonon B (2004) Liquid flow friction factor and heat transfer coefficient in small channels: an experimental investigation. Exp Therm Fluid Sci

    Google Scholar 

  14. Takács G, Szabó PG, Bognár G (2016) Enhanced thermal characterization method of microscale heatsink structures. Microelectron Reliab 67:21–28

    Article  Google Scholar 

  15. Li YF, **a GD, Ma DD, Jia YT, Wang J (2016) Characteristics of laminar flow and heat transfer in microchannel heatsink with triangular cavities and rectangular ribs. Int J Heat Mass Transfer 98:17–28

    Article  Google Scholar 

  16. Yang D, ** Z, Wang Y, Ding G, Wang G (2017) Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins. Int J Heat Mass Transfer 113:366–372

    Article  CAS  Google Scholar 

  17. Ghania IA, Kamaruzaman N, Sidik NAC (2017) Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Transfer 108:1969–1981

    Article  Google Scholar 

  18. Tokit EM, Mohammed HA, Yusoff MZ (2012) Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids. Int Commun Heat Mass Transfer 39:1595–1604

    Google Scholar 

  19. Chai L, **a GD, Wang HS (2016) Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse micro chambers. Int J Therm Sci 110:1–11

    Article  Google Scholar 

  20. Chen L, Yang A, **e Z, Sun F (2017) Constructal entropy generation rate minimization for cylindrical pin fin heat sinks. Int J Therm Sci 111:168–174

    Article  Google Scholar 

  21. Wong KC, Lee JH (2015) Investigation of thermal performance of micro- channel heat sink with triangular ribs in the transverse micro chambers. Int Commun Heat Mass Transfer 65:103–110

    Article  Google Scholar 

  22. Abdoli A, Jimenez G, Dulikravich GS (2015) Thermo-fluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot. Int J Therm Sci 90:290–297

    Article  Google Scholar 

  23. Zhao J, Huang S, Gong L, Huang Z (2016) Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl Therm Eng 93:1347–1359

    Article  Google Scholar 

  24. Vinotha R, Kumar S (2017) Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink. Int Commun Heat Mass Transfer 87:270–276

    Article  Google Scholar 

  25. Vafai K, Zhu L (1999) Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int J Heat Mass Transfer 42:2287–2297

    Article  CAS  Google Scholar 

  26. Wei X, Joshi Y (2004) Stacked microchannel heat sinks for liquid cooling of microchannel components. J Electron Packag 126:60–66

    Article  Google Scholar 

  27. Abdoli A, Dulikravich GS, Vasquez G, Rastkar S (2015) Thermo-fluid stress-deformation analysis of two-layer microchannel for cooling chips with hot spots. J Electron Packag 137:031003–031008

    Article  Google Scholar 

  28. Koo MJ, Im S, Joang L, Goodson KE (2005) Integrated microchannel cooling for three-dimensional electronic circuit architectures. J Heat Transfer 127:49–58

    Article  Google Scholar 

  29. Kim YJ, Joshi YK, Fedorov AG, Lee YJ, Lim SK (2010) Thermal characterization of interlayer microfluidic cooling of three-dimensional integrated circuits with non-uniform heat flux. J Heat Transfer 132:41009–41019

    Article  Google Scholar 

  30. Ansari D, Kim KY (2018) Hotspot analysis of double-layer microchannel heat sinks. Heat Transfer Eng 1–18. https://doi.org/10.1080/01457632.2018.1460918

  31. Zhai Y, **a G, Li Z, Wang HA (2016) Noval arrangement of staggered flow in double-layered microchannel heat sinks for microelectronic cooling. Int Commun Heat Mass Transfer 79:98–104

    Article  CAS  Google Scholar 

  32. Wong KC, Ang ML (2017) Thermal hydraulic performance of a double- layer microchannel heat sink with channel contraction. Int Commun Heat Mass Transfer 81:269–275

    Article  Google Scholar 

  33. Kumar A, Nath S, Bhanja D (2018) Effect of nanofluid on thermos hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling. Numer Heat Transfer Part A Appl 73:429–445

    Article  CAS  Google Scholar 

  34. Sadasivam R, Manglik RM, Jog MA (1999) Fully developed forced con- vection through trapezoidal and hexagonal ducts. Int J Heat Mass Transfer 42:4321–4331

    Article  CAS  Google Scholar 

  35. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transfer 48:2652–2661

    Article  CAS  Google Scholar 

  36. Wu HY, Cheng P (2003) Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. Int J Heat Mass Transfer 46:2519–2525

    Article  CAS  Google Scholar 

  37. Dharaiya VV, Kandlikar SG (2013) A numerical study on effects of 2D structured sinusoidal elements on fluid flow and heat transfer at microscale. Int J Heat Mass Transfer 57:190–201

    Article  Google Scholar 

  38. Jung JY, Oh HS, Kwak HY (2009) Forced convective heat transfer of nano fluids in microchannels. Int J Heat Mass Transfer 52:466–472

    Article  CAS  Google Scholar 

  39. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M (2012) Effect of Al2O3 - Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci 38:54–60

    Article  CAS  Google Scholar 

  40. Guo L, Xu H, Gong L (2015) Influence of wall roughness models on fluid flow and heat transfer in microchannels. Appl Therm Eng 84:399–408

    Article  Google Scholar 

  41. Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink. Adv Powder Technol 26:83–90

    Article  CAS  Google Scholar 

  42. Travnicek Z, Vit T (2015) Im**ement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets. Int J Heat Mass Transfer 85:473–487

    Article  Google Scholar 

  43. Glazar V, Frankovic B, Trp A (2015) Experimental and numerical study of the compact heat exchanger with different microchannel shapes. Int J Refrig 51:144–153

    Article  Google Scholar 

  44. Dickey JT, Lam TT (2009) High density electronic cooling triangular shaped microchannel device. US7523780

    Google Scholar 

  45. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett EDL 2:126–129

    Article  Google Scholar 

  46. Qasem NAA, Zubair SM (2018) Compact and microchannel heat exchangers: a comprehensive review of air-side friction factor and heat transfer correlations. Energy Convers Manag 173:555–601

    Article  Google Scholar 

  47. Kim B (2016) An experimental study on fully developed laminar flow and heat transfer in rectangular microchannels. Int J Heat Fluid Flow 62:224–232

    Article  Google Scholar 

  48. Raj MS, Harivennkateswara R (2015) Using computational fluid dynamics and analysis of microchannel heat sink. Int J Eng Inventions 4:67–74

    Google Scholar 

  49. Hajmohammadi MR, Alipour P, Parsa H (2018) Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks. Int J Heat Mass Transfer 126:808–815

    Article  CAS  Google Scholar 

  50. Kewalramani GV, Hedau G, Saha SK, Agrawal A (2019) Empirical correlation of laminar forced convective flow in trapezoidal microchannel based on experimental and 3D numerical study. Int J Therm Sci 142:422–433

    Article  Google Scholar 

  51. Chai L, **a GD, Wang HS (2016) Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Appl Therm Eng 92:32–41

    Article  Google Scholar 

  52. **e J, Yan H, Sundén B, **e G (2019) The influences of side wall proximity on flow and thermal performance of a microchannel with large-row pin-fins. Int J Therm Sci 140:8–19

    Article  Google Scholar 

  53. Chandra AK, Kishor K, Mishra PK, SirajAlam M (2015) Numerical simulation of heat transfer enhancement in periodic converging-diverging microchannel. Procedia Eng 127:95–101

    Article  Google Scholar 

  54. Deng D, Chen L, Chen X, Pi G (2019) Heat transfer and pressure drop of a periodic expanded-constrained microchannels heat sink. Int J Heat Mass Transfer 140:678–690

    Article  Google Scholar 

  55. **a GD, Wang W, Jia YT, et al (2019) Accepted manuscript

    Google Scholar 

  56. Kumar P (2019) Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. Int J Therm Sci 136:33–43

    Article  Google Scholar 

  57. Liu H, Qi D, Shao X, Wang W (2019) An experimental and numerical investigation of heat transfer enhancement in annular microchannel heat sinks. Int J Therm Sci 142:106–120

    Article  Google Scholar 

  58. Ji Y, Yuan K, Chung JN (2006) Numerical simulation of wall roughness on gaseous flow and heat transfer in a microchannel. Int J Heat Mass Transfer 49:1329–1339

    Article  CAS  Google Scholar 

  59. Raja Kuppusamy N, Saidur R, Ghazali NNN, Mohammed HA (2014) Numerical study of thermal enhancement in micro channel heat sink with secondary flow. Int J Heat Mass Transfer 78:216–223

    Article  Google Scholar 

  60. Ghale ZY, Haghshenasfard M, Esfahany MN (2015) Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-phase and multiphase CFD models. Int Commun Heat Mass Transfer 68:122–129

    Article  Google Scholar 

  61. Abdollahi A, Mohammed HA, Vanaki SM, Sharma RN (2018) Numerical investigation of fluid flow and heat transfer of nanofluids in microchannel with longitudinal fins. Ain Shams Eng J9:3411–3418

    Article  Google Scholar 

  62. Li J, Kleinstreuer C (2008) Thermal performance of nanofluid flow in microchannels. Int J Heat Fluid Flow 29:1221–1232

    Article  CAS  Google Scholar 

  63. Dong S, Jiang H, **e Y et al (2019) Experimental investigation on boiling heat transfer characteristics of Al2O3–water nanofluids in swirl microchannels subjected to an acceleration force. Chin J Aeronaut 32:1136–1144

    Article  Google Scholar 

  64. Shi X, Li S, Wei Y, Gao J (2018) Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel. Int Commun Heat Mass Transfer 90:111–120

    Article  CAS  Google Scholar 

  65. Saeed M, Kim MH (2018) Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transfer 120:671–682

    Article  CAS  Google Scholar 

  66. Martínez VA, Vasco DA, García-Herrera CM, Ortega-Aguilera R (2019) Numerical study of TiO2-based nanofluids flow in microchannel heat sinks: effect of the Reynolds number and the microchannel height. Appl Therm Eng 161:114130

    Google Scholar 

  67. Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink. Adv Powder Technol 26:83–90

    Article  CAS  Google Scholar 

  68. Sarafraz MM, Yang B, Pourmehran O et al (2019) Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transfer 107:24–33

    Article  CAS  Google Scholar 

  69. Bahiraei M, Jamshidmofid M, Goodarzi M (2019) Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq 273:88–98

    Article  CAS  Google Scholar 

  70. Manay E, Akyürek EF, Sahin B (2018) Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys 9:615–624

    Article  Google Scholar 

  71. Al-Rashed AAAA, Shahsavar A, Entezari S et al (2019) Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl Therm Eng 155:247–258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harikrishnan, S., Dhass, A.D., Ali, H.M. (2022). Heat Transfer Enhancement in the Micro Channel Heat Sinks. In: Thermal Performance of Nanofluids in Miniature Heat Sinks with Conduits. Fluid Mechanics and Its Applications, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-16-7845-5_4

Download citation

Publish with us

Policies and ethics

Navigation