Introduction to Binary Mixtures at Supercritical Pressures and Coupled Heat and Mass Transfer

  • Chapter
  • First Online:
Coupled Heat and Mass Transfer in Binary Mixtures at Supercritical Pressures

Part of the book series: Springer Theses ((Springer Theses))

  • 358 Accesses

Abstract

General backgrounds and basic concepts are introduced in this chapter, including critical phenomenon, critical anomalies, and the applications of supercritical pressure fluids. The coupled heat and mass transfer is explained briefly. A literature review is also provided, followed by the motivation and outline of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The critical parameters of \({\text {CO}}_{2}\) are \(p_\mathrm{C} = 7.3773\) MPa and \(T_\mathrm{C}=304.13\) K.

References

  1. Wikipedia (2019) Wikipedia contributors: citical point (thermodynamics)—Wikipedia, the free encyclopedia. URL https://en.wikipedia.org/w/index.php?title=Critical_point_(thermodynamics). Accessed 13 Dec 2019

  2. Lemmon EW, Bell I, Huber ML, McLinden MO (2018) NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 10.0. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  3. Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Line of compressibility maxima in the phase diagram of supercooled water. Phys Rev E 55:727–737

    Article  Google Scholar 

  4. Simeoni G, Bryk T, Gorelli F, Krisch M, Ruocco G, Santoro M, Scopigno T (2010) The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat Phys 6(7):503–507

    Article  Google Scholar 

  5. Fomin YD, Ryzhov VN, Tsiok EN, Brazhkin VV (2015) Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines. Phys Rev E 91:022111

    Article  Google Scholar 

  6. Yang C, Brazhkin VV, Dove MT, Trachenko K (2015) Frenkel line and solubility maximum in supercritical fluids. Phys Rev E 91(1):012112

    Article  Google Scholar 

  7. Yoon TJ, Lee YW (2018) Current theoretical opinions and perspectives on the fundamental description of supercritical fluids. J Supercritical Fluids 134:21–27

    Article  Google Scholar 

  8. Banuti D (2015) Crossing the Widom-line—supercritical pseudo-boiling. J Supercritical Fluids 98:12–16

    Article  Google Scholar 

  9. Maxim F, Contescu C, Boillat P, Niceno B, Karalis K, Testino A, Ludwig C (2019) Visualization of supercritical water pseudo-boiling at Widom line crossover. Nat Commun 10(1):1–11

    Article  Google Scholar 

  10. Miletić M, Fukač R, Pioro I, Dragunov A (2014) Development of gas cooled reactors and experimental setup of high temperature helium loop for in-pile operation. Nucl Eng Des 276:87–97

    Article  Google Scholar 

  11. Sharan P, Neises T, McTigue JD, Turchi C (2019) Cogeneration using multi-effect distillation and a solar-powered supercritical carbon dioxide Brayton cycle. Desalination 459:20–33

    Article  Google Scholar 

  12. Hobold GM, da Silva AK (2017) Critical phenomena and their effect on thermal energy storage in supercritical fluids. Appl Energy 205:1447–1458

    Article  Google Scholar 

  13. Avanthi Isaka B, Ranjith P, Rathnaweera T (2019) The use of super critical carbon dioxide as the working fluid in enhanced geothermal systems (EGSs): a review study. Sustainable Energy Technol Assess 36:100547

    Google Scholar 

  14. Moisseytsev A, Sienicki JJ (2009) Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl Eng Des 239(7):1362–1371

    Article  Google Scholar 

  15. Dunham MT, Iverson BD (2014) High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew Sustain Energy Rev 30:758–770

    Article  Google Scholar 

  16. Ganapathi GB, Wirz R (2012) High density thermal energy storage with supercritical fluids. In: ASME 2012 6th international conference on energy sustainability collocated with the ASME 2012 10th international conference on fuel cell science, engineering and technology. American Society of Mechanical Engineers Digital Collection, New York, pp 699–707

    Google Scholar 

  17. Higgins BS, Oldenburg CM, Muir MP, Pan L, Eastman AD (2016) Process modeling of a closed-loop s\({\text{CO}}_2\) geothermal power cycle. In: The 5th supercritical \({\text{ CO }}_2\) power cycles symposium, pp 1–12

    Google Scholar 

  18. Kim Y, Kim C, Favrat D (2012) Transcritical or supercritical \({\text{ CO }}_2\) cycles using both low- and high-temperature heat sources. Energy 43(1):402–415

    Article  Google Scholar 

  19. Li MJ, Zhu HH, Guo JQ, Wang K, Tao WQ (2017) The development technology and applications of supercritical \({\text{ CO }}_2\) power cycle in nuclear energy, solar energy and other energy industries. Appl Therm Eng 126:255–275

    Article  Google Scholar 

  20. Goyne C, Hall C, O’Brien W, Schetz J (2006) The Hy-V scramjet flight experiment. In: 14th AIAA/AHI space planes and hypersonic systems and technologies conference, p 7901

    Google Scholar 

  21. Zhu Y, Peng W, Xu R, Jiang P (2018) Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles. Chin J Aeronaut 31(10):1929–1953

    Article  Google Scholar 

  22. Wang X, Wang Y, Yang V (2019) Three-dimensional flow dynamics and mixing in a gas-centered liquid-swirl coaxial injector at supercritical pressure. Phys Fluids 31(6):065109

    Article  Google Scholar 

  23. Denies L (2015) Regenerative cooling analysis of oxygen/methane rocket engines. Master’s thesis, Delft University of Technology

    Google Scholar 

  24. Banuti D (2015) Thermodynamic analysis and numerical modeling of supercritical injection. Ph.D. thesis, University of Stuttgart

    Google Scholar 

  25. Knez Ž, Markočič E, Leitgeb M, Primožič M, Hrnčič MK, Škerget M (2014) Industrial applications of supercritical fluids: a review. Energy 77:235–243

    Article  Google Scholar 

  26. Guo JQ, Li MJ, Xu JL, Yan JJ, Wang K (2019) Thermodynamic performance analysis of different supercritical Brayton cycles using \({\text{ CO }}_2\)-based binary mixtures in the molten salt solar power tower systems. Energy 173:785–798

    Article  Google Scholar 

  27. Hu L, Chen D, Huang Y, Li L, Cao Y, Yuan D, Wang J, Pan L (2015) Investigation on the performance of the supercritical Brayton cycle with \({\text{ CO }}_2\)-based binary mixture as working fluid for an energy transportation system of a nuclear reactor. Energy 89:874–886

    Article  Google Scholar 

  28. Jeong WS, Jeong YH (2013) Performance of supercritical Brayton cycle using \({\text{ CO }}_2\)-based binary mixture at varying critical points for SFR applications. Nucl Eng Des 262:12–20

    Article  Google Scholar 

  29. Jeong WS, Lee JI, Jeong YH (2011) Potential improvements of supercritical recompression \({\text{ CO }}_2\) Brayton cycle by mixing other gases for power conversion system of a SFR. Nucl Eng Des 241(6):2128–2137

    Article  Google Scholar 

  30. Lewis TG, Conboy TM, Wright SA (2011) Supercritical \({\text{ CO }}_2\) mixture behavior for advanced power cycles and applications. Technical report, Sandia National Laboratory

    Google Scholar 

  31. Binotti M, Invernizzi CM, Iora P, Manzolini G (2019) Dinitrogen tetroxide and carbon dioxide mixtures as working fluids in solar tower plants. Sol Energy 181:203–213

    Article  Google Scholar 

  32. Manzolini G, Binotti M, Bonalumi D, Invernizzi C, Iora P (2019) \({\text{ CO }}_2\) mixtures as innovative working fluid in power cycles applied to solar plants: Techno-economic assessment. Solar Energy 181:530–544

    Article  Google Scholar 

  33. Bird R, Stewart W, Lightfoot E (2006) Transport phenomena. Wiley international edition. Wiley, New York

    Google Scholar 

  34. Luettmer-Strathmann J (2002) Thermodiffusion in the critical region. Springer, Berlin, pp 24–37

    Google Scholar 

  35. Raspo I, Meradji S, Zappoli B (2007) Heterogeneous reaction induced by the piston effect in supercritical binary mixtures. Chem Eng Sci 62(16):4182–4192

    Article  Google Scholar 

  36. Wannassi M, Raspo I (2016) Numerical study of non-isothermal adsorption of naphthalene in supercritical \({\text{ CO }}_2\): Behavior near critical point. J Supercritical Fluids 117:203–218

    Article  Google Scholar 

  37. Kadanoff LP (1966) Spin-spin correlations in the two-dimensional Ising model. Il Nuovo Cimento B (1965–1970) 44(2):276–305

    Article  Google Scholar 

  38. Widom B (1965) Equation of state in the neighborhood of the critical point. J Chem Phys 43(11):3898–3905

    Article  Google Scholar 

  39. Wilson KG (1971) Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys Rev B 4:3174–3183

    Article  MATH  Google Scholar 

  40. Barmatz M, Hahn I, Lipa JA, Duncan RV (2007) Critical phenomena in microgravity: past, present, and future. Rev Mod Phys 79:1–52

    Article  Google Scholar 

  41. Beysens D (2014) Critical point in space: a quest for universality. Microgravity Sci Technol 26(4):201–218

    Article  Google Scholar 

  42. Beysens DA (2005) Near-critical point hydrodynamics and microgravity. In: Gutkowski W, Kowalewski TA (eds) Mechanics of the 21st century. Springer, Dordrecht, Netherlands, pp 117–130

    Chapter  Google Scholar 

  43. Shen B, Zhang P (2013) An overview of heat transfer near the liquid-gas critical point under the influence of the piston effect: Phenomena and theory. Int J Therm Sci 71:1–19

    Article  Google Scholar 

  44. Zappoli B (2003) Near-critical fluid hydrodynamics. Comptes Rendus Mécanique 331(10):713–726

    Article  MATH  Google Scholar 

  45. Chen L (2016) Microchannel flow dynamics and heat transfer of near-critical fluid. Springer, Berlin

    Google Scholar 

  46. Chen L, Iwamoto Y (2017) Advanced applications of supercritical fluids in energy systems. IGI Global, Hershey

    Book  Google Scholar 

  47. Zappoli B, Beysens D, Garrabos Y et al (2015) Heat transfers and related effects in supercritical fluids. Springer, Berlin

    Book  MATH  Google Scholar 

  48. Onuki A, Ferrell RA (1990) Adiabatic heating effect near the gas-liquid critical point. Phys A 164(2):245–264

    Article  Google Scholar 

  49. Long Z, Zhang P, Shen B (2016) Thermomechanical effects in supercritical binary fluids. Int J Heat Mass Transf 99:470–484

    Article  Google Scholar 

  50. Hasan N, Farouk B (2012) Thermoacoustic transport in supercritical fluids at near-critical and near-pseudo-critical states. J Supercritical Fluids 68:13–24

    Article  Google Scholar 

  51. Onuki A (2007) Thermoacoustic effects in supercritical fluids near the critical point: resonance, piston effect, and acoustic emission and reflection. Phys Rev E 76:061126

    Article  MathSciNet  Google Scholar 

  52. Lei Z, Farouk B (2007) Generation and propagation of thermally induced acoustic waves in supercritical carbon dioxide. In: ASME international mechanical engineering congress and exposition. Vol 8: heat transfer, fluid flows, and thermal systems, Parts A and B. ASME, New York

    Google Scholar 

  53. Farouk B, Lin Y, Lei Z (2010) Acoustic wave induced flows and heat transfer in gases and supercritical fluids. In: Cho YI, Greene GA (eds) Advances in heat transfer, vol 42. Elsevier, Amsterdam, Netherlands, pp 1–136

    Google Scholar 

  54. Amiroudine S, Bontoux P, Larroudé P, Gilly B, Zappoli B (2001) Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below. J Fluid Mech 442:119–140

    Article  MATH  Google Scholar 

  55. Carlès P, Ugurtas B (1999) The onset of free convection near the liquid-vapour critical point Part I: Stationary initial state. Physica D 126(1–2):69–82

    Article  MathSciNet  MATH  Google Scholar 

  56. Gandikota G, Amiroudine S, Chatain D, Lyubimova T, Beysens D (2013) Rayleigh and parametric thermo-vibrational instabilities in supercritical fluids under weightlessness. Phys Fluids 25(6):064103

    Article  Google Scholar 

  57. Amiroudine S, Boutrouft K, Zappoli B (2005) The stability analysis of two layers in a supercritical pure fluid: Rayleigh-Taylor-like instabilities. Phys Fluids 17(5):054102

    Article  MATH  Google Scholar 

  58. Chen L, Zhang XR, Okajima J, Maruyama S (2014) Abnormal microchannel convective fluid flow near the gas-liquid critical point. Phys A 398:10–24

    Article  Google Scholar 

  59. Hu ZC, Zhang XR (2018) Onset of convection in a near-critical binary fluid mixture driven by concentration gradient. J Fluid Mech 848:1098–1126

    Article  MathSciNet  MATH  Google Scholar 

  60. Hu ZC, Davis SH, Zhang XR (2019) Onset of double-diffusive convection in near-critical gas mixtures. Phys Rev E 99:033112

    Article  Google Scholar 

  61. Hu ZC, Lv W, Zhang XR (2019) Detour induced by the piston effect in the oscillatory double-diffusive convection of a near-critical fluid. Phys Fluids 31(7):074107

    Article  Google Scholar 

  62. Ameur D, Raspo I (2013) Numerical simulation of the Poiseuille-Rayleigh-Bénard instability for a supercritical fluid in a mini-channel. Comput Thermal Sci Int J 5(2):107–118

    Article  Google Scholar 

  63. Boukari H, Shaumeyer JN, Briggs ME, Gammon RW (1990) Critical speeding up in pure fluids. Phys Rev A 41:2260–2263

    Article  Google Scholar 

  64. Hu ZC, Zhang XR (2016) Numerical simulations of the piston effect for near-critical fluids in spherical cells under small thermal disturbance. Int J Therm Sci 107:131–140

    Article  Google Scholar 

  65. Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41:2256–2259

    Article  Google Scholar 

  66. Zappoli B, Bailly D, Garrabos Y, Le Neindre B, Guenoun P, Beysens D (1990) Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys Rev A 41:2264–2267

    Article  Google Scholar 

  67. Nitsche K, Straub J (1987) Critical ’HUMP’ of \(c_v\) under microgravity results from the D1-spacelab experiment ’WAERMEKAPAZITAET’. European Space Agency, Paris, pp 109–116

    Google Scholar 

  68. Zappoli B (1992) The response of a nearly supercritical pure fluid to a thermal disturbance. Phys Fluids A: Fluid Dyn (1989–1993) 4(5):1040–1048

    Article  Google Scholar 

  69. Zappoli B, Carlès P (1995) The thermo-acoustic nature of the critical speeding up. Eur J Mech-B/Fluids 14(1):41–65

    MATH  Google Scholar 

  70. Zappoli B, Carlès P (1996) Acoustic saturation of the critical speeding up. Physica D 89(3–4):381–394

    Article  MATH  Google Scholar 

  71. Carlès P (1998) The effect of bulk viscosity on temperature relaxation near the critical point. Phys Fluids 10(9):2164–2178

    Article  Google Scholar 

  72. Jounet A, Zappoli B, Mojtabi A (2000) Rapid thermal relaxation in near-critical fluids and critical speeding up: Discrepancies caused by boundary effects. Phys Rev Lett 84:3224–3227

    Article  Google Scholar 

  73. Garrabos Y, Bonetti M, Beysens D, Perrot F, Fröhlich T, Carlès P, Zappoli B (1998) Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: Theory and experiments. Phys Rev E 57:5665–5681

    Article  Google Scholar 

  74. Guenoun P, Khalil B, Beysens D, Garrabos Y, Kammoun F, Le Neindre B, Zappoli B (1993) Thermal cycle around the critical point of carbon dioxide under reduced gravity. Phys Rev E 47:1531–1540

    Article  Google Scholar 

  75. Straub J, Eicher L, Haupt A (1995) Dynamic temperature propagation in a pure fluid near its critical point observed under microgravity during the German Spacelab mission D-2. Phys Rev E 51:5556–5563

    Article  Google Scholar 

  76. Zhong F, Meyer H (1995) Density equilibration near the liquid-vapor critical point of a pure fluid: Single phase \(T>T_{c}\). Phys Rev E 51:3223–3241

    Article  Google Scholar 

  77. Miura Y, Yoshihara S, Ohnishi M, Honda K, Matsumoto M, Kawai J, Ishikawa M, Kobayashi H, Onuki A (2006) High-speed observation of the piston effect near the gas-liquid critical point. Phys Rev E 74:010101

    Article  Google Scholar 

  78. Nakano A, Shiraishi M (2005) Piston effect in supercritical nitrogen around the pseudo-critical line. Int Commun Heat Mass Transfer 32(9):1152–1164

    Article  Google Scholar 

  79. Shen B, Zhang P (2010) On the transition from thermoacoustic convection to diffusion in a near-critical fluid. Int J Heat Mass Transf 53(21–22):4832–4843

    Article  MATH  Google Scholar 

  80. Shen B, Zhang P (2011) Thermoacoustic waves along the critical isochore. Phys Rev E 83(1):011115

    Article  Google Scholar 

  81. Hasan N, Farouk B (2013) Fast heating induced thermoacoustic waves in supercritical fluids: experimental and numerical studies. J Heat Transf-Trans ASME 135(8):081701

    Article  Google Scholar 

  82. Beysens D, Chatain D, Nikolayev VS, Ouazzani J, Garrabos Y (2010) Possibility of long-distance heat transport in weightlessness using supercritical fluids. Phys Rev E 82:061126

    Article  Google Scholar 

  83. Nakano A, Shiraishi M (2005) Visualization for heat and mass transport phenomena in supercritical artificial air. Cryogenics 45(8):557–565

    Article  Google Scholar 

  84. Nakano A (2007) Studies on piston and Soret effects in a binary mixture supercritical fluid. Int J Heat Mass Transf 50(23):4678–4687

    Article  MATH  Google Scholar 

  85. Chandrasekhar S (2013) Hydrodynamic and hydromagnetic stability. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  86. Giterman MS, Shteinberg VA (1970) Criteria for commencement of convection in a liquid close to the critical point. High Temp 8(4):799–805

    Google Scholar 

  87. Kogan AB, Meyer H (2001) Heat transfer and convection onset in a compressible fluid: \({}^{3}\rm He \) near the critical point. Phys Rev E 63:056–310

    Article  Google Scholar 

  88. Kogan AB, Murphy D, Meyer H (1999) Rayleigh-Bénard convection onset in a compressible fluid: \(\rm ^3\)He near \(T_c\). Phys Rev Lett 82(23):4635–4638

    Article  Google Scholar 

  89. Kogan AB, Murphy D, Meyer H (2000) Heat transfer in a pure near-critical fluid: Diffusive and convective regimes in \(\rm ^3He\). Physica B 284–288:208–209

    Article  Google Scholar 

  90. Chiwata Y, Onuki A (2001) Thermal plumes and convection in highly compressible fluids. Phys Rev Lett 87(14):144301

    Article  Google Scholar 

  91. Furukawa A, Onuki A (2002) Convective heat transport in compressible fluids. Phys Rev E 66:016302

    Article  Google Scholar 

  92. Amiroudine S, Zappoli B (2003) Piston-effect-induced thermal oscillations at the Rayleigh-Bénard threshold in supercritical \(^{3}\rm H \rm e \). Phys Rev Lett 90:105303

    Article  Google Scholar 

  93. Maekawa T, Ishii K, Ohnishi M, Yoshihara S (2002) Convective instabilities induced in a critical fluid. Adv Space Res 29(4):589–598

    Article  Google Scholar 

  94. Maekawa T, Ishii K, Shiroishi Y, Azuma H (2004) Onset of buoyancy convection in a horizontal layer of a supercritical fluid heated from below. J Phys A: Math Gen 37(32):7955–7969

    Article  MATH  Google Scholar 

  95. Accary G, Raspo I, Bontoux P, Zappoli B (2004) Three-dimensional Rayleigh-Bénard instability in a supercritical fluid. Comptes Rendus Mécanique 332(3):209–216

    Article  Google Scholar 

  96. Accary G, Raspo I, Bontoux P, Zappoli B (2005) Reverse transition to hydrodynamic stability through the Schwarzschild line in a supercritical fluid layer. Phys Rev E 72(3):035301

    Article  MATH  Google Scholar 

  97. Accary G, Raspo I, Bontoux P, Zappoli B (2005) Stability of a supercritical fluid diffusing layer with mixed boundary conditions. Phys Fluids 17(10):104105

    Article  MATH  Google Scholar 

  98. Accary G, Bontoux P, Zappoli B (2009) Turbulent Rayleigh-Bénard convection in a near-critical fluid by three-dimensional direct numerical simulation. J Fluid Mech 619:127–145

    Article  MATH  Google Scholar 

  99. Shteinberg V (1971) Convective instability of a binary mixture, particularly in the neighborhood of the critical point. J Appl Math Mech 35(2):335–345

    Article  Google Scholar 

  100. Das KS, Bhattacharjee JK (2000) Onset of convection in a binary mixture near the plait point. Phys Rev E 61:5191–5194

    Article  Google Scholar 

  101. Giglio M, Vendramini A (1975) Optical measurements of gravitationally induced concentration gradients near a liquid-liquid critical point. Phys Rev Lett 35(3):168–170

    Article  Google Scholar 

  102. Greer SC, Block TE, Knobler CM (1975) Concentration gradients in nitroethane+ 3-methylpentane near the liquid-liquid critical solution point. Phys Rev Lett 34(5):250–253

    Article  Google Scholar 

  103. Maisano G, Migliardo P, Wanderlingh F (1976) Experimental investigation of gravity-induced concentration gradients in critical mixtures. J Phys A: Math Gen 9(12):2149–2158

    Article  Google Scholar 

  104. Maisano G, Migliardo P, Wanderlingh F (1976) Gravity-induced gradients in critical mixtures. Optics Commun 19(1):155–158

    Article  Google Scholar 

  105. Zappoli B, Amiroudine S, Carlès P, Ouazzani J (1996) Thermoacoustic and buoyancy-driven transport in a square side-heated cavity filled with a near-critical fluid. J Fluid Mech 316:53–72

    Article  MATH  Google Scholar 

  106. Hasan N, Farouk B (2012) Buoyancy driven convection in near-critical and supercritical fluids. Int J Heat Mass Transf 55(15):4207–4216

    Article  Google Scholar 

  107. Soboleva E (2013) Thermal gravitational convection of a side-heated supercritical fluid with variable physical properties. Fluid Dyn 48(5):648–657

    Article  MATH  Google Scholar 

  108. Zappoli B, Jounet A, Amiroudine S, Mojtabi A (1999) Thermoacoustic heating and cooling in near-critical fluids in the presence of a thermal plume. J Fluid Mech 388:389–409

    Article  MATH  Google Scholar 

  109. Soboleva EB (2003) Adiabatic heating and convection caused by a fixed-heat-flux source in a near-critical fluid. Phys Rev E 68:042201

    Article  Google Scholar 

  110. Shen B (2013) Study of heat and mass transport mechanisms of supercritical fluids under the influence of the piston effect across different timescales. Ph.D. thesis, Shanghai Jiaotong University

    Google Scholar 

  111. Shen B, Zhang P (2012) Rayleigh-Bénard convection in a supercritical fluid along its critical isochore in a shallow cavity. Int J Heat Mass Transf 55(23):7151–7165

    Article  Google Scholar 

  112. Soboleva E, Nikitin S (2014) Benchmark data on laminar Rayleigh-Bénard convection in a stratified supercritical fluid: A case of two-dimensional flow in a square cell. Int J Heat Mass Transf 69:6–16

    Article  Google Scholar 

  113. Wei Y, Hu ZC, Chong B, Xu J (2018) The Rayleigh-Bénard convection in near-critical fluids: Influences of the specific heat ratio. Numer Heat Transf Part A: Appl 74(1):931–947

    Article  Google Scholar 

  114. Chavanne X, Chillà F, Castaing B, Hébral B, Chabaud B, Chaussy J (1997) Observation of the ultimate regime in Rayleigh-Bénard convection. Phys Rev Lett 79(19):3648–3651

    Article  Google Scholar 

  115. Kraichnan RH (1962) Turbulent thermal convection at arbitrary Prandtl number. Phys Fluids 5(11):1374–1389

    Article  MATH  Google Scholar 

  116. Niemela J, Skrbek L, Sreenivasan K, Donnelly R (2000) Turbulent convection at very high Rayleigh numbers. Nature 404(6780):837–840

    Article  Google Scholar 

  117. Ashkenazi S, Steinberg V (1999) High Rayleigh number turbulent convection in a gas near the gas-liquid critical point. Phys Rev Lett 83:3641–3644

    Article  Google Scholar 

  118. Ashkenazi S, Steinberg V (1999) Spectra and statistics of velocity and temperature fluctuations in turbulent convection. Phys Rev Lett 83:4760–4763

    Article  Google Scholar 

  119. Shraiman BI, Siggia ED (1990) Heat transport in high-Rayleigh-number convection. Phys Rev A 42:3650–3653

    Article  Google Scholar 

  120. Ahlers G, Araujo FF, Funfschilling D, Grossmann S, Lohse D (2007) Non-Oberbeck-Boussinesq effects in gaseous Rayleigh-Bénard convection. Phys Rev Lett 98:054501

    Article  MATH  Google Scholar 

  121. Ahlers G, Calzavarini E, Araujo FF, Funfschilling D, Grossmann S, Lohse D, Sugiyama K (2008) Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point. Phys Rev E 77:046302

    Article  Google Scholar 

  122. Burnishev Y, Segre E, Steinberg V (2010) Strong symmetrical non-Oberbeck-Boussinesq turbulent convection and the role of compressibility. Phys Fluids 22(3):035108

    Article  MATH  Google Scholar 

  123. Burnishev Y, Steinberg V (2012) Statistics and scaling properties of temperature field in symmetrical Non-Oberbeck-Boussinesq turbulent convection. Phys Fluids 24(4):045102

    Article  Google Scholar 

  124. Valori V (2018) Rayleigh-Bénard convection of a supercritical fluid: PIV and heat transfer study. Ph.D. thesis, Delft University of Technology

    Google Scholar 

  125. Valori V, Elsinga G, Rohde M, Tummers M, Westerweel J, van der Hagen T (2017) Experimental velocity study of non-Boussinesq Rayleigh-Bénard convection. Phys Rev E 95(5):053113

    Article  Google Scholar 

  126. Yik H, Valori V, Weiss S (2020) Turbulent Rayleigh-Bénard convection under strong non-Oberbeck-Boussinesq conditions. Phys Rev Fluids 5:103502

    Article  Google Scholar 

  127. Grossmann S, Lohse D (2004) Fluctuations in turbulent Rayleigh-Bènard convection: The role of plumes. Phys Fluids 16(12):4462–4472

    Google Scholar 

  128. Valori V, Elsinga GE, Rohde M, Westerweel J, van Der Hagen TH (2019) Particle image velocimetry measurements of a thermally convective supercritical fluid. Exp Fluids 60(9):1–14

    Article  Google Scholar 

  129. Assenheimer M, Steinberg V (1993) Rayleigh-Bénard convection near the gas-liquid critical point. Phys Rev Lett 70(25):3888

    Article  Google Scholar 

  130. Assenheimer M, Steinberg V (1994) Transition between spiral and target states in Rayleigh-Bénard convection. Nature 367(6461):345–347

    Article  Google Scholar 

  131. Assenheimer M, Steinberg V (1996) Critical phenomena in hydrodynamics. Europhysics news 27(4):143–147

    Google Scholar 

  132. Assenheimer M, Steinberg V (1996) Observation of coexisting upflow and downflow hexagons in Boussinesq Rayleigh-Bénard convection. Phys Rev Lett 76:756–759

    Article  Google Scholar 

  133. Roy A, Steinberg V (2002) Reentrant hexagons in non-Boussinesq Rayleigh-Bénard convection: effect of compressibility. Phys Rev Lett 88:244503

    Article  Google Scholar 

  134. Ahlers G, Dressel B, Oh J, Pesch W (2010) Strong non-Boussinesq effects near the onset of convection in a fluid near its critical point. J Fluid Mech 642:15–48

    Article  MATH  Google Scholar 

  135. Long Z (2014) Study of heat and mass transfer mechanisms and application of supercritical binary fluid. Ph.D. thesis, Shanghai Jiaotong University

    Google Scholar 

  136. Long Z, Zhang P, Shen B, Li T (2015) Experimental investigation of natural convection in a supercritical binary fluid. Int J Heat Mass Transf 90:922–930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Chao Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, ZC. (2022). Introduction to Binary Mixtures at Supercritical Pressures and Coupled Heat and Mass Transfer. In: Coupled Heat and Mass Transfer in Binary Mixtures at Supercritical Pressures. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-7806-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7806-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7805-9

  • Online ISBN: 978-981-16-7806-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation