Microbe-Mediated Amelioration of Salinity Stress in Crops

  • Chapter
  • First Online:
Plant Stress Mitigators
  • 774 Accesses

Abstract

Salinity is the key constraint that affects the crop growth, metabolism, and yield because of high abundance of salts present in the soil. The area and agriculture crop affected by salinity stress are increasing day by day. Salinity stress disturbs many physiological, biochemical, and molecular parameters in crop plants. Therefore, there is urgent need of promising candidate, which helps to mitigate salinity stress, favors plant growth, and also has environment-friendly impact. The characterization and exploitation of soil microbes (especially mycorrhizal fungi, PGPR, endophytes such as Piriformospora indica and cyanobacteria) in agriculture open new alternatives to overcome salinity stress. Amelioration of salinity in plant occurs through plant growth-promoting rhizobacteria (PGPB) by applying different strategies such as they introduce synthesis of antioxidative enzyme to cope with reactive oxygen species, which is generated during salt stress in plants, and stimulates accumulation of osmolyte in plants, and plants inoculated with PGPB have high K+/Na+ ratio that favors salinity tolerance. Besides these, PGPB produces various hormones (auxin, cytokinins, and gibberellins) to mitigate salt stress. Arbuscular mycorrhizal fungi (AMF) equipped with fascinating mechanisms are useful in mitigating the adverse effect of salinity stress. AMF inoculation in plant increases the mineral nutrient uptake of K, Fe, Ca, Mg, Mn, and Zn, reduces the uptake of Na+, and accumulation of proline and phenol increases, which also reduced the effect of salinity in plants. Several AMF species produced various antioxidative enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and peroxidase (POD) that help to minimize the effect of ROS produced at the time of salinity stress. An endophyte, P. indica, colonizes with a broad range of plant species. P. indica root colonization helps in amelioration of salt stress by manipulating hormone signaling pathways and enhanced root cell division by production of IAA hormone, which results in better absorption of nutrient and plant growth. Cyanobacteria can survive and live under extreme salinity and further utilized to increase the soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abo-Doma A, Edrees S, Abdel-Aziz S (2016) The effect of mycorrhiza growth and expression of some genes in barley. Egypt J Genet Cytol 40(2):301–313

    Article  Google Scholar 

  • Ahmed A, Hasnain A, Akhtar S, Hussain A, Yasin AUG, Wahid A (2010) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). Afr J Biotechnol 9(33):5441–5544

    CAS  Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. American-Eurasian J Agric Environ Sci 1:119–126

    Google Scholar 

  • Alguacil MM, Herandez JA, Roldan A (2003) Antioxidant enzyme actives in shoots from three mycorrhizal shrub species afforested in a degraded semi arid soil. Physiol Plantarum 118:562–570

    Article  CAS  Google Scholar 

  • Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH (2013) A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Mol BioSyst 9:1498–1510. https://doi.org/10.1039/c3mb70069k

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Alqarawi AA, Abd Allah EF, Hashem A (2014a) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9(1):802–810. https://doi.org/10.1080/17429145.2014.949886

    Article  CAS  Google Scholar 

  • Alqarawi AA, Hashem A, Abd Allah EF, Alshahrani TS, Huqail AA (2014b) Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biol Hung 65(1):61–71. https://doi.org/10.1556/ABiol.65.2014.1.6

    Article  CAS  PubMed  Google Scholar 

  • Arora M, Kaushik A, Rani N, Kaushik CP (2010) Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J Environ Biol 31(5):701–704

    CAS  PubMed  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366(1–2):93–105. https://doi.org/10.1007/s11104-012-1402-5

    Article  CAS  Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF Inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981. https://doi.org/10.3390/su71215799

    Article  CAS  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty N, Ghosh R, Ghosh S, Narula K, Tayal R, Datta A, Chakraborty S (2013) Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase1[W]. Plant Physiol 162(1):364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican NK, Shen Q, Zhang N (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44. https://doi.org/10.1111/ppl.12441

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • de la Pena TC, Redondo FJ, Manrique E, Lucas MM, Pueyo JJ (2010) Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnol J 8:954–965

    Article  CAS  Google Scholar 

  • del Amor FM, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39:82–90. https://doi.org/10.1071/Fp11173

    Article  PubMed  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. Chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127

    Article  Google Scholar 

  • Fu QL, Liu C, Ding NF, Lin YC, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting Rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agr Water Manag 97(12):1994–2000

    Article  Google Scholar 

  • Gaber A, El-Assal SE (2012) Cyanobacterium Synechocystis sp. PCC 6803 Glutaredoxin Gene (slr1562) protects Escherichia coli against abiotic stresses. Am J Agric Biol Sci 7:88–96

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol 108(1):236–245

    Article  CAS  PubMed  Google Scholar 

  • Ghorbanli M, Ebrahimzadeh H, Sharifi M (2004) Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Bio Plant 48(4):575–581

    Article  CAS  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:1–20

    Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:304–312

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microbial Ecol 54:753–760

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339. https://doi.org/10.1007/s10658-007-9162-4

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547. https://doi.org/10.1155/2016/6284547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327. https://doi.org/10.1007/s11104-009-0255-z

    Article  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242. https://doi.org/10.1080/17429145.2015.1052025

    Article  Google Scholar 

  • Hong SH, Lee EY (2017) Phytostabilization of salt accumulated soil using plant and biofertilizers: field application. Int Biodeterior Biodegrad 124:188–195

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jha M, Chourasia S, Sinha S (2013) Microbial consortium for sustainable rice production. Agroecol Sustain Food Syst 37(3):340–362. https://doi.org/10.1080/10440046.2012.672376

    Article  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Kapoor R, Gupta MK, Kumar N, Kanwar SS (2017) Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere 4:62–69

    Article  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6. https://doi.org/10.1016/j.scienta.2009.01.001

    Article  CAS  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117. https://doi.org/10.14348/molcells.2014.2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Li H, Lei P, Pang X, Li S, Xu H, Xu Z, Feng X (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34

    Article  CAS  Google Scholar 

  • Malam IO et al (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290:209–219

    Article  CAS  Google Scholar 

  • Martinez R, Espejo A, Sierra M, Ortiz-Bernad I, Correa D, Bedmar E, Lopez-Jurado M, Porres JM (2015) Co-inoculation of Halomonas maura and Ensifer meliloti to improve alfalfa yield in saline soils. Appl Soil Ecol 87:81–86

    Article  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543. https://doi.org/10.1007/s00425-010-1196-8

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X (2016) Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci 7:644. https://doi.org/10.3389/fpls.2016.00644

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M (2010a) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981. https://doi.org/10.3390/su71215799

    Article  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A (2010b) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium AzosThe marine alga Ulva lactuca. J Plant Growth Regul 29(1):6–22. https://doi.org/10.1007/s00344-009-9107-6

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309. https://doi.org/10.1139/W09-092

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Shaharoona B, Arshad M, Crowley DE (2012) Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Appl Soil Ecol 62:147–154. https://doi.org/10.1016/j.apsoil.2012.08.005

    Article  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9. https://doi.org/10.1016/j.plaphy.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  • Ngwene B, Boukail S, Söllner L, Franken P, Andrade-Linares D (2016) Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant Soil 405(1–2):231–241

    Article  CAS  Google Scholar 

  • Niu SQ, Li HR, Pare PW, Aziz M, Wang SM, Shi HZ (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230. https://doi.org/10.1007/s11104-015-2767-z

    Article  CAS  Google Scholar 

  • Patel D, Jha CK, Tan KN, Sara FM (2012) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31(1):53–62. https://doi.org/10.1007/s00344-011-9219-7

    Article  CAS  Google Scholar 

  • Patel S, **al HN, Amaresan N (2017) Isolation and characterization of drought resistance bacteria for plant growth promoting properties and their effect on chilli (Capsicum annum) seedling under salt stress. Biocat Agric Biotechnol 12:85–89

    Article  Google Scholar 

  • Pereira SIA, Moreira H, Argyres K, Castro PML, Marques APGC (2016) Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms. Appl Soil Ecol 105:36–47

    Article  Google Scholar 

  • Pinedo I, Ledger T, Greve M, Poupin MJ (2015) Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci 6:466. https://doi.org/10.3389/fpls.2015.00466

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272. https://doi.org/10.1016/j.apsoil.2012.01.006

    Article  Google Scholar 

  • Saddique AB, Ali Z, Khan AS, Rana AI, Shamsi MI (2018) Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice 11:34. https://doi.org/10.1186/s12284-018-0226-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microb Biot 28(4):1503–1509. https://doi.org/10.1007/s11274-011-0952-7

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menéndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva E, Liamir A, Begrman B (2002) Evidence for production of the Phytohormone indole—acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Expl 174:59–65

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164(9):1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Shekoofeh E, Sepideh H, Roya R (2012) Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. J Biotech 11(9):2223–2227

    CAS  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant growth- promoting rhizobacteria. J Plant Growth Regul 31(2):195–206. https://doi.org/10.1007/s00344-011-9231-y

    Article  CAS  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4:1–6

    CAS  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya ZMA, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

    Article  Google Scholar 

  • Swarnalakshmi K, Dhar D, Singh P (2007) Evaluation of blue-green algal inoculation on specific soil parameters. Acta Agron Hungarica 55:307–313

    Article  CAS  Google Scholar 

  • Tamoi M, Kurotaki H, Fukamizo T (2007) Beta-1,4-glucanase like protein from cyanobacterium synechocystis sp PCC 6803. Mol Cell Proteomics 13:3519–3532

    Google Scholar 

  • Tang M, Chen H, Huang JC, Tian ZQ (2009) AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol Biochem 41:936–940. https://doi.org/10.1016/j.soilbio.2008.11.007

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58. https://doi.org/10.1080/17429140903125848

    Article  CAS  Google Scholar 

  • Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Sun F, Sun X, Song D, Chen W, Zhang A (2017) Phosphorous application improves drought tolerance of Phoebe zhennan. Front Plant Sci 8:1561

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293. https://doi.org/10.1111/plb.12173

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222. https://doi.org/10.1016/S1002-0160(11)60120-3

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551. https://doi.org/10.1111/jam.12866

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of Arbuscular Mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10(12):e0145726. https://doi.org/10.1371/journal.pone.0145726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao LX, Wu ZS, Zheng YY, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54. https://doi.org/10.1016/j.ejsobi.2009.11.002

    Article  CAS  Google Scholar 

  • Zarea MJ, Ha**ia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146. https://doi.org/10.1016/j.soilbio.2011.11.006

    Article  CAS  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang WY, Wang AA, Hao RC, Yang T (2014) Endophytic fungus Piriformospora indica promotes growth and confers drought tolerance in sesame (Sesamum indicum L.). Chinese J Oil Crop Sci 1(11)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monika et al. (2022). Microbe-Mediated Amelioration of Salinity Stress in Crops. In: Vaishnav, A., Arya, S., Choudhary, D.K. (eds) Plant Stress Mitigators. Springer, Singapore. https://doi.org/10.1007/978-981-16-7759-5_20

Download citation

Publish with us

Policies and ethics

Navigation