Introduction to Multi-agent Cooperative Coverage Control

  • Chapter
  • First Online:
Cooperative Coverage Control of Multi-Agent Systems and its Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 408 ))

Abstract

Complex systems consist of various interconnected components, and they normally display peculiar behaviors. Since individual components interact with each other, the causality is quite complicated. Therefore, it is crucial to reveal the underlying principle of collective behaviors. As one of key research fields, multi-agent systems have attracted significant interest of scholars from various disciplines due to its wide applications. Essentially, multi-agent system is a networked system that consists of a team of agents with sensing, communicating, computing and actuating capability. There are several emerging research directions such as distributed output regulation, set coordination of multi-agent system, and cooperative coverage of multi-agent system. Therein, multi-agent coverage control is the focus of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldrop, M.: Complexity: The Emerging Science at the Edge of Order and Chaos. Simon and Schuster, New York (1992)

    Google Scholar 

  2. Couzin, I.D., Krause, J., Franks, N., Levin, S.: Effective leadership and decision-making in animal groups on the move. Nature 433(3), 513–516 (2005)

    Article  Google Scholar 

  3. Anderson, P.: More is different. Science 177(4), 393–396 (1972)

    Article  Google Scholar 

  4. Martínez, S., Cortés, J., Bullo, F.: Motion coordination with distributed information. IEEE Control Mag. 27(4), 75–88 (2007)

    Google Scholar 

  5. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control. Communications and Control Engineering Series. Springer, London (2008)

    Google Scholar 

  6. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  7. Lin, P., Jia, Y., Li, L.: Distributed robust \(H_{\infty }\) consensus control in directed networks of agents with time-delay. Syst. Control Lett. 57(8), 643–653 (2008)

    Article  MathSciNet  Google Scholar 

  8. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(1), 25–34 (1987)

    Article  Google Scholar 

  9. Vicsek, T., Cziroók, A., Ben-Jacob, E., Cohen, O., Shochet, I.: Novel type of phase transition in a system of self-deriven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  10. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, map**, deployment and detection. Int. J. Robot. Res. 25(3), 431–447 (2006)

    Article  Google Scholar 

  11. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  12. Lin, P., Jia, Y.: Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 45(9), 2154–2158 (2009)

    Article  MathSciNet  Google Scholar 

  13. Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(5), 846–850 (2008)

    Article  MathSciNet  Google Scholar 

  14. Huang, J.: Nonlinear Output Regulation: Theory and Applications. SIAM, Phildelphia (2004)

    Google Scholar 

  15. Francis, B.A., Wonham, W.M.: The internal model principle of control theory. Automatica 12(4), 457–465 (1976)

    Article  MathSciNet  Google Scholar 

  16. Hong, Y., Wang, X., Jiang, Z.: Multi-agent coordination with general linear models: a distributed output regulation approach. In: Proceedings of IEEE International Conference on Control and Automation, pp. 137–142, June 9-11. **amen, China (2010)

    Google Scholar 

  17. Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for linear systems. IEEE Trans. Autom. Control 55(12), 2891–2896 (2010)

    Article  MathSciNet  Google Scholar 

  18. Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45(5), 1165–1175 (2009)

    Article  MathSciNet  Google Scholar 

  19. **, M., Ferrari-Trecate, G., Egerstedt, M., Buffa, A.: Containment control in mobile networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)

    Article  MathSciNet  Google Scholar 

  20. Johansson, B., Rabi, M., Johansson, M.: A randomized incremental subgradient method for distributed optimization in networked systems. SIAM J. Optim. 20(3), 1157–1170 (2009)

    Article  MathSciNet  Google Scholar 

  21. B. Johansson, T. Keviczky, M. Johansson, and K. Johansson, Subgradient methods and consensus algorithms for solving convex optimization problems. In: Proceedings of the IEEE Conference on Decision and Control, pp. 4185–4190. Cancun, Mexico (2008)

    Google Scholar 

  22. Nedić, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–51 (2009)

    Article  MathSciNet  Google Scholar 

  23. Nedić, A., Ozdaglar, A., Parrilo, P.A.: Constrained Consensus and Optimization in Multi-Agent Networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    Article  MathSciNet  Google Scholar 

  24. **ao, L., Johansson, M., Byod, S.: Simultaneous routing and resource allocation via dual decomposition. IEEE Trans. Commun. 52(7), 1136–1144 (2004)

    Article  Google Scholar 

  25. Alba, E., Troya, J.: A survey of parallel distributed genetic algorithms. Complexity 4(4), 31–52 (1999)

    Article  MathSciNet  Google Scholar 

  26. Gage, D.W.: Command control for many-robot systems. In: Proceedings of the Annual AUVS Technical Symposium, pp. 22–24. Huntsville, Alabama (1992)

    Google Scholar 

  27. Zhai, C., Hong, Y.: Decentralized sweep coverage algorithm for multi-agent systems with workload uncertainties. Automatica 49(7), 2154–2159 (2013)

    Article  MathSciNet  Google Scholar 

  28. Zhai, C., **ao, G., Chen, M.Z.: Distributed sweep coverage algorithm of multi-agent systems using workload memory. Syst. Control Lett. 124, 75–82 (2019)

    Article  MathSciNet  Google Scholar 

  29. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)

    Google Scholar 

  30. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MathSciNet  Google Scholar 

  31. Schwager, M., Slotine, J., Rus, D.: Decentralized adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)

    Article  Google Scholar 

  32. Luna, J., Fierro, R., Abdallah, C., Wood, J.: An adaptive coverage control algorithm for deployment of nonholonomic mobile sensors. In: Proceedings of IEEE Conference on Decision and Control, pp. 1250–1256. Atlanta (2010)

    Google Scholar 

  33. Drezner, Z.: Facility Location: A Survey of Applications and Methods ser, Springer Series in Operations Research. Springer, New York (1995)

    Google Scholar 

  34. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebraic Geom. Topol. 7(2), 339–358 (2007)

    Article  MathSciNet  Google Scholar 

  35. Choset, H.: Coverage for robotics – a survey of recent results. Ann. Math. Artif. Intell. 31(1), 113–126 (2001)

    Article  Google Scholar 

  36. Min, T., Yin, H.: A decentralized approach for cooperative swee** by multiple mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 380–385. Victoria, B.C., Canada (1998)

    Google Scholar 

  37. Butler, Z., Rizzi, A., Hollis, R.: Complete distributed coverage of rectilinear environments. In: Proceedings of the Workshop on the Algorithmic Foundations of Robotics (2000)

    Google Scholar 

  38. Cassandras, C.G., Li, W.: Sensor networks and cooperative control. Eur. J. Control. 11(4–5), 436–463 (2005)

    Article  MathSciNet  Google Scholar 

  39. Wagner, I., Lindenbaum, M., Bruckstein, A.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999)

    Article  Google Scholar 

  40. Cheng, T.M., Savkin, A.V.: Decentralized control of mobile sensor networks for triangular blanket coverage. In: American Control Conference, pp. 2903–2908. Baltimore (2010)

    Google Scholar 

  41. Hussein, I.I., Stipanović, D.M.: Effective coverage control for mobile sensor networks with guaranteed collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 642–657 (2007)

    Article  Google Scholar 

  42. Kumar, S., Lai, T.H., Balogh, J.: On \(k\)-coverage in a mostly slee** sensor networks. In: Proceedings of the 10th International Conference on Mobile Computing and Networking, pp. 144–158. Philadelphia (2004)

    Google Scholar 

  43. Shi, G., Hong, Y.: Region coverage for planar sensor network via sensing sectors. In: Proceedings of IFAC World Congress, pp. 4156–4161. Seoul, Korea (2008)

    Google Scholar 

  44. Song, C., Fan, Y.: Coverage control for mobile sensor networks with limited communication ranges on a circle. Automatica 92, 155–161 (2018)

    Article  MathSciNet  Google Scholar 

  45. Meguerdichian, S., Koushanfar, F., Potkonjak, M., et al.: Worst and best-case coverage in sensor networks. IEEE Trans. Mobile Comput. 4(1), 84–92 (2005)

    Article  Google Scholar 

  46. Cheng, T.M., Savkin, A.V.: A distributed self-deployment algorithm for the coverage of mobile wireless sensor networks. IEEE Commun. Lett. 13(11), 877–879 (2009)

    Article  Google Scholar 

  47. Schumacher, C.: Ground moving target engagement by cooperative UAVs. In: Proceedings of American Control Conference, pp. 4502–4505, Portland (2005)

    Google Scholar 

  48. Oh, S., Schenato, L., Chen, P., Sastry, S.: Tracking and coordination of multiple agents using sensor networks: system design, algorithms and experiments. Proc. IEEE 95(1), 234–254 (2007)

    Article  Google Scholar 

  49. Wang, X., Hong, Y., Jiang, Z.: Coverage tracking of a moving target by a group of mobile agents. In: Proceedings of Asian Control Conference, pp. 332–337. Hong Kong, China (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhai .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhai, C., Zhang, HT., **ao, G. (2021). Introduction to Multi-agent Cooperative Coverage Control. In: Cooperative Coverage Control of Multi-Agent Systems and its Applications. Studies in Systems, Decision and Control, vol 408 . Springer, Singapore. https://doi.org/10.1007/978-981-16-7625-3_1

Download citation

Publish with us

Policies and ethics

Navigation