Design of Imprinting Matrix for Dual Template Sensing Based on Molecularly Imprinted Polymer Technology

  • Conference paper
  • First Online:
Recent Trends in Electrochemical Science and Technology

Abstract

A novel dual template imprinted matrix developed by the synergistic effect of reduced graphene oxide (rGO) and poly(3-thiophene acetic acid) composite (3-TAA) as imprinting matrix, has been proposed. A molecularly imprinted polymer (MIP) sensor for dual templates, antipyrine, and ethionamide has been prepared by electro polymerization of 3-TAA as a functional monomer on rGO coated glassy carbon electrode (GCE). The objective of this work was to design a dual analyte sensing platform in order to reduce the burden of multiple sensors (needed for each analyte). MIP was characterized by cyclic voltammetry and differential pulse voltammetry (DPV). The designed sensor showed good selectivity towards structural and functional analogous molecules as probable interferants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitcombe MJ, Chianella I, Larcombe L et al (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40:1547–1571. https://doi.org/10.1039/c0cs00049c

    Article  CAS  Google Scholar 

  2. Chen L, Wang X, Lu W et al (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/C6CS00061D

    Article  CAS  Google Scholar 

  3. Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402:3177–3204. https://doi.org/10.1007/s00216-011-5696-6

    Article  CAS  Google Scholar 

  4. Malitesta C, Guascito MR, Mazzotta E, Picca RA (2010) X-Ray photoelectron spectroscopy characterization of electrosynthesized poly(3-thiophene acetic acid) and its application in molecularly imprinted polymers for atrazine. Thin Solid Films 518:3705–3709. https://doi.org/10.1016/j.tsf.2009.10.016

    Article  CAS  Google Scholar 

  5. Janáky C, Endrodi B, Kovács K et al (2010) Chemical synthesis of poly(3-thiophene-acetic-acid)/magnetite nanocomposites with tunable magnetic behaviour. Synth Met 160:65–71. https://doi.org/10.1016/j.synthmet.2009.09.034

    Article  CAS  Google Scholar 

  6. Mukherjee P, Dawn A, Nandi AK (2010) Biomolecular hybrid of poly(3-thiophene acetic acid) and double stranded DNA: optical and conductivity properties. Langmuir 26:11025–11034. https://doi.org/10.1021/la101215v

    Article  CAS  Google Scholar 

  7. Yang S (2019) Electrochemical sensor based on molecularly imprinted polymer-aptamer hybrid receptor for voltammetric detection of thrombin. 166(2):B23–B28. https://doi.org/10.1149/2.0131902jes

  8. Kim H, Abdala AA, MacOsko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  9. Stauber T, Beltrán JI, Schliemann J (2016) Tight-binding approach to pentagraphene. Sci Rep 6:4–11. https://doi.org/10.1038/srep22672

  10. Artiles MS, Rout CS, Fisher TS (2011) Graphene-based hybrid materials and devices for biosensing. Adv Drug Deliv Rev 63:1352–1360. https://doi.org/10.1016/j.addr.2011.07.005

    Article  CAS  Google Scholar 

  11. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  12. Duan D, Yang H, Ding Y et al (2018) Three-dimensional molecularly imprinted electrochemical sensor based on Au NPs@Ti-based metal-organic frameworks for ultra-trace detection of bovine serum albumin. Electrochim Acta 261:160–166. https://doi.org/10.1016/j.electacta.2017.12.146

    Article  CAS  Google Scholar 

  13. Taniselass S, Arshad MKM, Gopinath SCB (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292. https://doi.org/10.1016/j.bios.2019.01.047

    Article  CAS  Google Scholar 

  14. Zhang H, Gai P, Cheng R et al (2013) Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Anal Methods 5:3591–3600. https://doi.org/10.1039/c3ay40572a

    Article  CAS  Google Scholar 

  15. Zou YX, Feng X, Chu ZY et al (2019) Preclinical safety assessment of antipyrine combined with lidocaine hydrochloride as ear drops. Regul Toxicol Pharmacol 103:34–40. https://doi.org/10.1016/j.yrtph.2019.01.018

    Article  CAS  Google Scholar 

  16. Vesell ES (1979) The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther 26:275–286. https://doi.org/10.1002/cpt1979263275

    Article  CAS  Google Scholar 

  17. Arbex M, Castro Lima Varella M, Siquera H, Mello F (2010) Antituberculosis drugs: Drug interactions, adverse effects, and use in special situations.J Bras Pneumol 36:626–640. https://doi.org/10.1590/s1806-37132010000500016

  18. Hrichi H, Louhaichi MR, Monser L, Adhoum N (2014) Gliclazide voltammetric sensor based on electropolymerized molecularly imprinted polypyrrole film onto glassy carbon electrode. Sens Actuators B Chem 204:42–49. https://doi.org/10.1016/j.snb.2014.07.056

    Article  CAS  Google Scholar 

  19. da Silva H, Pacheco JG, MCS Magalhães J, Viswanathan S, Delerue-Matos C (2014) MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim. Biosens Bioelectron 52:56–61. https://doi.org/10.1016/j.bios.2013.08.035

  20. Srivastava J, Gupta N, Kushwaha A, Umrao S, Srivastava A, Singh M (2019) Highly sensitive and selective estimation of aspartame by chitosan nanoparticle—graphene nanocomposite tailored EQCM-MIP sensor. Polym Bull 76:4431–4449. https://doi.org/10.1007/s00289-018-2597-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R., Harijan, M., Singh, M. (2022). Design of Imprinting Matrix for Dual Template Sensing Based on Molecularly Imprinted Polymer Technology. In: Mudali, U.K., Aruna, S.T., Nagaswarupa, H.P., Rangappa, D. (eds) Recent Trends in Electrochemical Science and Technology. Springer Proceedings in Materials, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-16-7554-6_12

Download citation

Publish with us

Policies and ethics

Navigation