Biodegradable Materials for Medicinal Applications

  • Chapter
  • First Online:
Nanotechnology for Biomedical Applications

Abstract

In medical field, biomaterial has advanced dramatically in the past 50 years with multidisciplinary work presented by the chemists, engineers, biologists and clinicians. Truly such smart biomaterials have gained much attention due to their ability to recognise, respond to environment and even one can record. In addition, attractive research and advancements in biomaterials have triggered opportunities and brought to the treatments of host tissue repairs. Biomaterials are classified as natural or synthetic according to their source. Synthetic biomaterials have found more versatile and exhibit diverse applications owing to their tuneable designs and modifications. The importance of biomaterials exists in the human body with the recovery or regeneration of the damaged tissues, non-toxicity and long-term effect of exotic substance to human body to reduce as lower as possible. For the fabrications of biomaterials materials, selection plays vital role in respect of biocompatibility, degradability and medicinal values. Generally, polymers, metals, metal alloys and ceramics were employed to preparer biomaterials. The presentations in this chapter reflect the true inter-disciplinary nature of biomaterials, contributions to the medical field. The presentations also shows the potential applications of biomaterials being employed in surgical implants, matrices, used for long-term implantable, controlled drug release, therapeutic, diagnosis and in switchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bose S, Bandyopadhyay A, Introduction to biomaterials. Charact Biomater. https://doi.org/10.1016/B978-0-12-415800-9.00001-2

  2. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    CAS  Google Scholar 

  3. Williams DF (2009) Biomaterials 30:5897–5909

    CAS  Google Scholar 

  4. Levin SN (ed) Materials in biomedical engineering. Annal New York Acad Sci 146 (1968)

    Google Scholar 

  5. Middleto JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Google Scholar 

  6. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724

    Google Scholar 

  7. Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface 4(15):637–642

    CAS  Google Scholar 

  8. Wohlers T, Gornet T (2014) Wohlers Rep

    Google Scholar 

  9. Kruth JP, Leu MC, Nakagawa T (1998) CIRP Ann 4:525–540

    Google Scholar 

  10. Ige OO, Umoru LE, Aribo S (2012) ISRN Mater Sci 1–20

    Google Scholar 

  11. Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers—a critical review. Resour Conserv Recycl 78:54–66

    Google Scholar 

  12. Velde KV, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442

    Google Scholar 

  13. Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18:2–9

    CAS  Google Scholar 

  14. Daniels A, Chang MKO, Andriano KP, Heller J (2004) J Appl Biomater 1:57–78

    Google Scholar 

  15. Athanasiou K, Schmitz J, Agrawal C (1998) Tissue Eng 4:53e63

    Google Scholar 

  16. McVicar I, Hatton P, Brook I (1995) Brit J Oral Max Surg 33:220–223

    CAS  Google Scholar 

  17. Garcia-Gareta E, Coathup MJ, Blunn GW (2015) Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81:112–121

    CAS  Google Scholar 

  18. Kurien T, Pearson RG, Scammell BE (2013) Bone graft substitutes currently available in orthopaedic practice: the evidence for their use. Bone Joint J 95-B:583–597

    Google Scholar 

  19. Maurus PB, Kaeding CC (2004) Oper Techn Sport Med 12:158–160

    Google Scholar 

  20. Lou CW, Yao CH, Chen YS, Hsieh TC, Lin JH, Hsing WH (2008) Text Res J 78:958e965

    Google Scholar 

  21. Casey DJ, Rosati L, Jarrett PK, Lehmann LT (1989) Bioabsorbable surgical suture coating, US Patent, No. 4857602

    Google Scholar 

  22. Elvira C, Mano JF, San Roman J, Reis RL (2002) Biomaterials 23:1955–1966

    Google Scholar 

  23. Kim DH, Viventi J, Amsden JJ, **ao J, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang KC, Zakin MR, Litt B, Rogers JA (2010) Nat Mater 9:511–517

    CAS  Google Scholar 

  24. Hwang SW, Tao H, Kim D-H, Cheng h, Song J-K, Rill E, Brenckle MA, Panilaitis B, Won SM, Kim YS, Song YM, Yu KJ, Ameen A, Li R, Su Y, Yang M, Kaplan DL, Zakin MR, Slepian MJ

    Google Scholar 

  25. Ng WL, Wang S, Yeong WY, Naing MW (2016) Trends Biotechnol 34:689–699

    CAS  Google Scholar 

  26. He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, Li X (2018) Burns Trauma 6:5

    Google Scholar 

  27. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, Park JK, Yoo SS (2009) Biomaterials 30:1587–1595

    CAS  Google Scholar 

  28. Singh M, Jonnalagadda S (2019) Euro J Pharm Sci 105167

    Google Scholar 

  29. Tian H, Tang Z, Zhuang X, Chen X, **g X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280

    CAS  Google Scholar 

  30. Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    CAS  Google Scholar 

  31. Soni S, Gupta H, Kumar N, Nishad DK, Mittal G, Bhatnagar A (2010) Biodegradable biomaterials. Recent Patents Biomed Eng 3:30–40

    Google Scholar 

  32. Laurencin CT (2003) American academy of orthopaedic surgeons. Bone Graft Substitutes. W. Conshohocken, PA, ASTM International

    Google Scholar 

  33. Giordano GG, Refojo MF, Biomaterials in ophthalmology, from: human biomaterials applications

    Google Scholar 

  34. Basu B, Katti DS, Kumar A (2009) Advanced biomaterials: fundamentals, processing, and applications. Wiley, Hoboken, NJ, USA

    Google Scholar 

  35. ** QM, Zhao SA, Berry JE, Somerman MJ, Giannobile WV (2003) Cementum engineering with three-dimensional polymer scaffolds. J Biomed Mater Res A 67(1):54–60

    Google Scholar 

  36. Bojic S, Volarevic V, Ljujic B, Stojkovic M (2014) Dental stem cells—characteristics and potential. Histol Histopathol 29(6):699–706

    CAS  Google Scholar 

  37. Farrugia BL, Mi Y, Kim HN, Whitelock JM, Baker S, Wiesmann WP et al (2018) Chitosan-based heparan sulfate mimetics promote epidermal formation in a human organotypic skin model. Adv Funct Mater 28:1802818

    Google Scholar 

  38. Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H et al (2018) In vitro and in vivo study of PCL/COLL wound dressing loaded with insulinchitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol 117:601–609

    CAS  Google Scholar 

  39. Tra Thanh N, Ho Hieu M, Tran Minh Phuong N, Do Bui Thuan T, Nguyen Thi Thu H, Thai VP, et al (2018) Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater Sci Eng C 91:318–329

    Google Scholar 

  40. Permyakova ES, Polcak J, Slukin PV, Ignatov SG, Gloushankova NA, Zajíčková L et al (2018) Mater Des 153:60–70

    CAS  Google Scholar 

  41. Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    CAS  Google Scholar 

  42. Hosseinkhani H, Hosseinkhani M (2009) Curr Drug Saf 4(1):79–83. https://doi.org/10.2174/157488609787354477

    Article  CAS  Google Scholar 

  43. Agterberg MJH, Versnel H, Van Dijk LM, De Groot JCMJ, Klis SFL (2009) JARO-J Assoc Res Otolaryngol 10(3):355–367. https://doi.org/10.1007/s10162-009-0170-2

  44. Allen TM, Cullis PR (1818) Science 2004:303

    Google Scholar 

  45. Langer R (1990) Science 249:1527

    CAS  Google Scholar 

  46. Ensign LM, Cone R, Hanes J (2012) Adv Drug Delivery Rev 64:557

    CAS  Google Scholar 

  47. Zhang S, Bellinger AM, Glettig DL, Barman R, Lee YA, Zhu J, Cleveland C, Montgomery VA, Gu L, Nash LD, Maitland DJ, Langer R, Traverso G (2015) Nat Mater 14:1065

    CAS  Google Scholar 

  48. Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA (1999) J Pharm Sci 88:933

    CAS  Google Scholar 

  49. Jeong B, Bae YH, Lee DS, Kim SW (1997) Nature 388:860

    CAS  Google Scholar 

  50. Guvendiren ML, Lu HD, Burdick JA (2011) Soft Matter 8:260

    Google Scholar 

  51. Anselmo AC, Mitragotri S (2014) J Controlled Release 190:15

    CAS  Google Scholar 

  52. Prausnitz MR, Langer R (2008) Nat Biotechnol 26:1261

    CAS  Google Scholar 

  53. Patton JS, Byron PR (2007) Nat Rev Drug Discovery 6:67

    CAS  Google Scholar 

  54. Illum L (2002) Drug Discovery Today 7:1184

    CAS  Google Scholar 

  55. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) AAPS J 12:348

    CAS  Google Scholar 

  56. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R (1868) Science 1997:276

    Google Scholar 

  57. Park JH, Allen MG, Prausnitz MR (2005) J Controlled Release 104:51

    CAS  Google Scholar 

  58. Illum LJ, Jorgensen H, Bisgaard H, Krogsgaard O, Rossing N (1987) Int J Pharm 39:189

    CAS  Google Scholar 

  59. Bourges JLG, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF (2003) Invest Ophthalmol Visual Sci 44:3562

    Google Scholar 

  60. Folkman J (1990) Biomaterials 11:615

    CAS  Google Scholar 

  61. Folkman J, Long DM Jr, Rosenbaum R (1966) Science 154:148

    CAS  Google Scholar 

  62. Folkman J, Reiling W, Williams G (1969) Surgery 66:194

    CAS  Google Scholar 

  63. Dziuk PJ, Cook B (1966) Endocrinology 78:208; (b) Bass PP, Purdon RA, Wiley JN (1965) Nature 208:591; (c) Powers KG (1965) J Parisitol 51:53

    Google Scholar 

  64. Higuchi T (1961) J Pharm Sci 50:874

    CAS  Google Scholar 

  65. Tibbitt MW, Dahlman JE, Langer R (2016) J Am Chem Soc 138:704

    CAS  Google Scholar 

  66. Zhang YS, Khademhosseini A (2017) Science 356:3627

    Google Scholar 

  67. Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) Adv Mater 26:85

    CAS  Google Scholar 

  68. Hoare TRK, Kohane DS (1993) Polymer 2008:49

    Google Scholar 

  69. Langer RP, Peppas NA (2003) AIChE J 49:2990

    CAS  Google Scholar 

  70. Hoffman AS (2008) J Controlled Release 132:153

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasai, R.D. et al. (2022). Biodegradable Materials for Medicinal Applications. In: Gopi, S., Balakrishnan, P., Mubarak, N.M. (eds) Nanotechnology for Biomedical Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-7483-9_11

Download citation

Publish with us

Policies and ethics

Navigation