An Approach to Generate Level Set Function from STL File for Fluid-Structure Interaction Computations

  • Conference paper
  • First Online:
CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 203))

  • 3439 Accesses

Abstract

In this paper, we will present an approach to compute the signed distance or level set function from the Standard Triangle Language (STL) file format. Then the level set is used to represent the surface of a given object inside the computational domain. The continuity and Navier-Stokes equations are solved numerically to study the fluid flows over the solid body. The finite-volume method (FVM) is applied to approximate all terms in the governing equations to conserve mass and momentum. The cut-cell method is employed to avoid recomputing the mesh points when the body moves around. The transport equation for the level set function is solved accordingly to update the position of the object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 309.23
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 427.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ANSYS. https://www.ansys.com/ (2018)

  2. Fast distance fields for fluid dynamics mesh generation on graphics hardware. Communications in Computational Physics 26(3), 654–680 (2019)

    Google Scholar 

  3. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Academic Press, New York (1978)

    Google Scholar 

  4. Dang, S.T., Johansen, S.T., Meese, E.A.: A Cartesian cut-cell method based on formal volume averaging of mass momentum and energy equations. In: Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, SINTEF akademisk forlag (2017)

    Google Scholar 

  5. Dang, S.T., Meese, E.A., Morud, J.C., Johansen, S.T.: Numerical Approach for Generic Three-Phases Flow Based on Cut-cell and Ghost Fluid Methods. International Journal for Numerical Methods in Fluids 0(ja) (Jun 2019)

    Google Scholar 

  6. DesJardin, P.E., Bojko, B.T., McGurn, M.T.: Initialization of high-order accuracy immersed interface cfd solvers using complex cad geometry. International Journal for Numerical Methods in Engineering 109(4), 487–513 (2017)

    Article  MathSciNet  Google Scholar 

  7. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Computers & Fluids 102, 182–202 (2014)

    Article  Google Scholar 

  9. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  10. Johnson, T.A., Patel, V.C.: Flow past a sphere up to a Reynolds number of 300. Journal of Fluid Mechanics 378, 19–70 (1999)

    Article  Google Scholar 

  11. Kirkpatrick, M., Armfield, S., Kent, J.: A representation of curved boundaries for the solution of the Navier–Stokes equations on a staggered three-dimensional Cartesian grid. Journal of Computational Physics 184(1), 1–36 (2003)

    Article  MATH  Google Scholar 

  12. Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of Computational Physics 227(10), 4825–4852 (May 2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (Nov 1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Park, T., Lee, S., Kim, J., Kim, C.: Cuda-based signed distance field calculation for adaptive grids. In: 2010 10th IEEE International Conference on Computer and Information Technology. pp. 1202–1206 (2010)

    Google Scholar 

  15. Pointwise: Pointwise (2020), http://www.pointwise.com/

  16. Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. Journal of Computational Physics 311, 62–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shu, R., Liu, A.: A fast ray casting algorithm using adaptive isotriangular subdivision. In: Proceedings of the 2nd Conference on Visualization ’91. p. 232–238. VIS ’91, IEEE Computer Society Press, Washington, DC, USA (1991)

    Google Scholar 

  18. Sigg, C., Peikert, R., Gross, M.: Signed distance transform using graphics hardware. In: IEEE Visualization, 2003. VIS 2003. pp. 83–90 (2003)

    Google Scholar 

  19. Wang, K., Grétarsson, J., Main, A., Farhat, C.: Computational algorithms for tracking dynamic fluid–structure interfaces in embedded boundary methods. International Journal for Numerical Methods in Fluids 70(4), 515–535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the Norwegian Research Council to fund our research through the ICELOAD project (project number 308780, “Enabling prediction of ice loads on structures in the Arctic”), and the Russian Foundation for Basic Research for funding through grant number 20-58-20004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stein Tore Johansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dang, S.T., Johansen, S.T., Akhatov, I. (2022). An Approach to Generate Level Set Function from STL File for Fluid-Structure Interaction Computations. In: Ha-Minh, C., Tang, A.M., Bui, T.Q., Vu, X.H., Huynh, D.V.K. (eds) CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure. Lecture Notes in Civil Engineering, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-16-7160-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7160-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7159-3

  • Online ISBN: 978-981-16-7160-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation