Green Synthesis of Nanoparticles

  • Chapter
  • First Online:
Green Nanoparticles: The Future of Nanobiotechnology

Abstract

Nanoparticle synthesis is usually accomplished using three methods, viz., physical, chemical, and biological, each having its own unique features. The physical and chemical methods are considered superior for obtaining stable nanostructures having uniform size, but do not fill into our objective of long-term sustainability goals. Considering the limitations of these methods in nanomaterial synthesis, environmentally friendly methods need to be developed using techniques that are clean, nontoxic, and environment-friendly. This has ushered in the evolution of “green nanotechnology” as a new discipline. Bionanofabrication is its most important component since it uses living organisms or their biomass instead of the expensive physical or chemical methods and provides an environmentally benign, less-toxic, and cheap method for nanoparticle synthesis. Biological synthesis has been used for the green synthesis of diverse range of nanoparticles comprising of metals, semiconductors, quantum dots, and alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694

    Article  CAS  PubMed  Google Scholar 

  • Anisimov S, Inogamov N, Oparin A, Rethfeld B, Yabe T, Ogawa M, Fortov VE (1999) Pulsed laser evaporation: equation-of-state effects. Appl Phys A Mater Sci Process 69:617–620

    Article  CAS  Google Scholar 

  • Aromal SA, Vidhu VK, Philip D (2012) Green synthesis of well dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta Part A 85:99–104

    Article  CAS  Google Scholar 

  • Bagwe RP, Khilar KC (1997) Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT. Langmuir 13:6432–6438

    Article  CAS  Google Scholar 

  • Bedia J, Calvo L, Lemus J, Quintanilla A, Casas J, Mohedano A, Zazo J, Rodriguez J, Gilarranz M (2015) Colloidal and microemulsion synthesis of rhenium nanoparticles in aqueous medium. Colloid Surf A 469:202–210

    Article  CAS  Google Scholar 

  • Bhattacharya D, Ra**der G (2008) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  Google Scholar 

  • Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci 170(1):2–27

    Article  CAS  PubMed  Google Scholar 

  • Bock N, Woodruff MA, Hutmacher DW, Dargaville TR (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3:131–149

    Article  CAS  Google Scholar 

  • Carpenter EE, Connor CJO, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177

    Article  CAS  Google Scholar 

  • Chen DH, Chen CJ (2002) Formation and characterization of au-ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562

    Article  CAS  Google Scholar 

  • Chen DH, Wu SH (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  CAS  Google Scholar 

  • Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475

    Article  CAS  Google Scholar 

  • Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizon 2:91–112

    Article  Google Scholar 

  • Devatha CP, Thalla AK (2018) Green synthesis of nanomaterials. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Synthesis of inorganic nanomaterials. Elsevier, Amsterdam, pp 169–184

    Chapter  Google Scholar 

  • Dhanabalan K, Gurunathan K (2015) Microemulsion mediated synthesis and characterization of CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922. J Nanosci Nanotechnol 15(6):4200–4204

    Article  CAS  PubMed  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ, Jie Ying AN, Verma NK, Beuerman RW, Lakshminarayan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5(127):105003–105037

    Article  CAS  Google Scholar 

  • Dogra V, Kaur G, **dal S, Kumar R, Kumar S, Singhal NK (2019) Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus. Sci Total Environ 681:350–364

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Chen Y-C, Feldmann C (2015) Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem 17(8):4107–4132

    Article  CAS  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33

    Article  CAS  Google Scholar 

  • Eid K, Wang H, Wang L (2017) Nanoarchitectonic metals. In: Ariga K, Aono M (eds) Supra-materials nanoarchitectonics. Elsevier, Amsterdam, pp 135–171

    Chapter  Google Scholar 

  • Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto HW (1993) The production and structure of pyrolytic carbon nanotubes. J Phys Chem Solid 54:1841–1848

    Article  CAS  Google Scholar 

  • Eslamian M, Heine MC (2008) Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles. Nanotechnology 19:45712

    Article  Google Scholar 

  • Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32(33):198–205

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gorrasi G, Sorrentino A (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem 17(5):2610–2625

    Article  CAS  Google Scholar 

  • Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219

    Article  CAS  Google Scholar 

  • Hakim LF, Portman JL, Casper MD, Weimer AW (2005) Aggregation behavior of nanoparticles in fluidized beds. Powder Technol 160:149–160

    Article  CAS  Google Scholar 

  • Han MY, Huang W, Chew CH, Gan LM, Zhang XJ, Ji W (1998) Large nonlinear absorption in coated Ag2S/CdS nanoparticles by inverse microemulsion. J Phys Chem B 102:1884–1887

    Article  CAS  Google Scholar 

  • Haram SK, Mahadeshwar AR, Dixit SG (1996) Synthesis and characterization of copper sulphate nanoparticles in triton-X 100 water-in-oil microemulsion. J Phys Chem 100:5868–5873

    Article  CAS  Google Scholar 

  • Harvey E, Ghantasala M (2006) Nanofabrication. In: Hannink RHJ, Hill AJ (eds) Nanostructure control of materials. Elsevier, Amsterdam, pp 303–330

    Chapter  Google Scholar 

  • Hopwood JD, Mann S (1997) Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micelles and microemulsions. Chem Mater 9:1819–1828

    Article  CAS  Google Scholar 

  • Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bioinspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44:6330–6374

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential applications. Biotechnol Lett 38:545–560

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Hayashi Y, Takizawa H, Suganuma K (2018) Nanoparticle fabrication. In: Morris J (ed) Nanopackaging. Springer, Cham, pp 219–242

    Google Scholar 

  • Ivanoska-Dacikj A, Bogoeva-Gaceva G (2019) Fabrication methods of carbon-based rubber nanocomposites. In: Yaragalla S, Mishra RK, Thomas S, Kalarikkal N, Maria HJ (eds) Carbon-based Nanofillers and their rubber nanocomposites: fundamentals and applications. Elsevier, Amsterdam, pp 27–47

    Chapter  Google Scholar 

  • Jaworek A (2007) Micro and nanoparticle production by electrospraying. Powder Technol 176:18–35

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Kumar V (2009) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25:1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Khan MKI, Nazir A, Maan AA (2017) Electrospraying: a novel technique for efficient coating of foods. Food Eng Rev 9:112–119

    Article  CAS  Google Scholar 

  • Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods 163:105656

    Article  CAS  PubMed  Google Scholar 

  • Kharissova OV, Dias HV, Kharisov BI, Pérez BO, Pérez VM (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248

    Article  CAS  PubMed  Google Scholar 

  • Kulandaisamy AJ, Rayappan JBB (2018) Significance of nanoparticles and the role of amino acids in structuring them-a review. J Nanosci Nanotechnol 18(8):5222–5233

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant–mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomat 2011:1–16

    Google Scholar 

  • Loukanov A, Emin S (2016) Biotinylated vanadium and chromium sulfide nanoparticles as probes for co-localization of membrane proteins. Microsc Res Tech 79(9):799–805

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Gang O (2017) DNA functionalization of nanoparticles. Methods Mol Biol 1500:99–107

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc Chem Res 40(9):810–818

    Article  CAS  PubMed  Google Scholar 

  • Madkour LH (2019) Processing of nanomaterials (NMs). In: Nanoelectronic materials. Advanced structured materials, vol 116. Springer, Cham, pp 309–353

    Chapter  Google Scholar 

  • Madler L, Kammler HK, Mueller R, Pratsinis SE (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33:369–389

    Article  CAS  Google Scholar 

  • Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. First Nano update. Arab J Chem 5:397–417

    Article  CAS  Google Scholar 

  • Mandal D, Ghosh M, Maiti S, Das K, Das PK (2014) Water-in-oil microemulsion doped with gold nanoparticle decorated single walled carbon nanotube: scaffold for enhancing lipase activity. Colloids Surf B Biointerfaces 113:442–449

    Article  CAS  PubMed  Google Scholar 

  • Mazid RR, Si KJ, Cheng W (2014) DNA based strategy to nanoparticle superlattices. Methods 67(2):215–226

    Article  CAS  PubMed  Google Scholar 

  • Mijatovic D, Eijkel J, Van D, Berg A (2005) Technologies for nanofluidic systems: top-down versus bottom-up- a review. Lab Chip 5(5):492–500

    Article  CAS  PubMed  Google Scholar 

  • Mohan Bhagyaraj S, Oluwafemi OS (2018) Nanotechnology: the science of the invisible. Synthesis of inorganic nanomaterials. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Synthesis of inorganic nanomaterials. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Monnoyer P, Fonseca A, Nagy JB (1995) Preparation of colloidal AgBr particles from microemulsions. Colloid Surf A: Physicochem Eng Asp 100:233–243

    Article  CAS  Google Scholar 

  • Mueller R, Madler L, Pratsinis SE (2003) Nanoparticle synthesis at high production rates by spray flame pyrolysis. Chem Eng Sci 58:1969–1976

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus–mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Oda M (2002) Metal nano-particles. J Jpn Inst Electron Packag 5:523–528

    Article  CAS  Google Scholar 

  • Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, Kuttuva GR (2012) Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir 28(22):8479–8485

    Article  CAS  PubMed  Google Scholar 

  • Pawar A, Thakkar S, Misra M (2018) A bird’s eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. J Control Release 286:179–200

    Article  CAS  PubMed  Google Scholar 

  • Pemartin-Biernath K, Vela-González AV, Moreno-Trejo MB, Leyva-Porras C, Castañeda-Reyna IE, Juárez-Ramírez I, Solans C, Sánchez-Domínguez M (2016) Synthesis of mixed cu/Ce oxide nanoparticles by the oil-in-water microemulsion reaction method. Materials (Basel) 9(6):480

    Article  Google Scholar 

  • Pereira L, Mehboob F, Stams AJM, Mota MM, Rijnaarts HHM, Madalena Alves MM (2015) Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol 35:114–128

    Article  CAS  PubMed  Google Scholar 

  • Pileni M, Lisiecki I (1993) Nanometer copper metallic particles synthesis in reverse micelles. Colloids Surf A Physicochem Eng Asp 80:63–68

    Article  CAS  Google Scholar 

  • Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947

    Article  CAS  Google Scholar 

  • Pollard AJ, Nair RR, Sabki SN, Staddon CR, Perdigao LMA, Hsu CH, Garfitt JM, Gangopadhyay S, Gleeson HF, Geim AK, Beton PH (2009) Formation of monolayer graphene by annealing sacrificial nickel thin films. J Phys Chem C 113:16565–16567

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Burman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Qi LM, Ma J, Chen H, Zhao Z (1997) Reverse micelle based formation of BaCO3 nanowires. J Phys Chem B 101:3460–3463

    Article  CAS  Google Scholar 

  • Raffi M, Rumaiz AK, Hasan MM, Shah SI (2007) Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J Mater Res 22:3378–3384

    Article  CAS  Google Scholar 

  • Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Synthesis of inorganic nanomaterials. Elsevier, Amsterdam, pp 121–139

    Chapter  Google Scholar 

  • Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. In: Ficai D, Grumezescu AM (eds) Nanostructures for novel therapy. Elsevier, Amsterdam, pp 1–36

    Google Scholar 

  • Rodríguez-San-Miguel D, Amo-Ochoa P, Zamora F (2016) MasterChem: cooking 2D-polymers. Chem Commun (Camb) 52(22):4113–4127

    Article  Google Scholar 

  • Routkevitch D, Bigoni T, Moskovits M, Xu JM (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem 100:14037–14047

    Article  CAS  Google Scholar 

  • Sanchez-Dominguez M, Koleilat H, Boutonnet M, Solans C (2011) Synthesis of Pt nanoparticles in oil-in-water microemulsions: phase behavior and effect of formulation parameters on nanoparticle characteristics. J Dispers Sci Technol 32:1765–1770

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf 145:83–96

    Article  CAS  Google Scholar 

  • Shi W, Song S, Zhang H (2013) Hydrothermal synthetic strategies of inorganic semi-conducting nanostructures. Chem Soc Rev 42:5714–5743

    Article  CAS  PubMed  Google Scholar 

  • Simon P, Bahrig L, Baburin IA, Formanek P, Röder F, Sickmann J, Hickey SG, Eychmüller A, Lichte H, Kniep R, Rosseeva E (2014) Interconnection of nanoparticles within 2D superlattices of PbS/oleic acid thin films. Adv Mater 26(19):3042–3049

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015) Plant nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Inven 4:25–40

    CAS  Google Scholar 

  • Singh H, Du J, Singh P, Yi TH (2018) Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif Cells Nanomed Biotechnol 46:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Sintubin L, De Gusseme B, Van der Meeren P, Pycke BF, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91:153–162

    Article  CAS  PubMed  Google Scholar 

  • Solanki JN, Sengupta R, Murthy Z (2010) Synthesis of copper sulphide and copper nanoparticles with microemulsion method. Solid State Sci 12:1560–1566

    Article  CAS  Google Scholar 

  • Soleimani Zohr Shiri M, Henderson W, Mucalo MR (2019) A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble metals, Os, re, Ir and Rh. Materials (Basel) 12(12):1896

    Article  Google Scholar 

  • Solero G (2017) Synthesis of nanoparticles through flame spray pyrolysis: experimental apparatus and preliminary results. Nanosci Nanotechnol 7(1):21–25

    CAS  Google Scholar 

  • Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59

    Article  CAS  Google Scholar 

  • Sonawane GH, Patil SP, Sonawane SH (2018) Nanocomposites and its applications. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal M, Thomas S (eds) Applications of nanomaterials. Elsevier, Amsterdam, pp 1–22

    Google Scholar 

  • Sosnik A (2014) Production of drug-loaded polymeric nanoparticles by electrospraying technology. J Biomed Nanotechnol 10:2200–2217

    Article  CAS  PubMed  Google Scholar 

  • Sridhar R, Ramakrishna S (2013) Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 3(3):e24281

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Bhargava A (2016) Green nanotechnology. J Nanotech Material Sci 3:1–7

    Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini Rev Med Chem 21:245–265

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayana C, Prabhu B (2007) Synthesis of nanostructured materials by inert-gas condensation methods. In: Nanostructured materials. Elsevier, Amsterdam, pp 47–90

    Chapter  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Tricoli A, Nasiri N, Chen H, Wallerand AS, Righettoni M (2016) Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Sol Energy 136:553–559

    Article  CAS  Google Scholar 

  • Tripp SL, Pusztay SV, Ribbe AE, Wei A (2002) Self–assembly of cobalt nanoparticle rings. J Am Chem Soc 124:7914–7915

    Article  CAS  PubMed  Google Scholar 

  • Vaucher S, Fielden J, Li M, Dujardin E, Mann S (2002) Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosyl ferrate and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett 2:225–229

    Article  CAS  Google Scholar 

  • Verma D, Goh KL (2019) Functionalized graphene-based nanocomposites for energy applications. In: Jawaid M, Bouhfid R, Qaiss AK (eds) Functionalized graphene nanocomposites and their derivatives: synthesis, processing and applications. Elsevier, Amsterdam, pp 219–243

    Chapter  Google Scholar 

  • Wang H, Tang M, Shi F, Ding R, Wang L, Wu J, Li X, Liu Z, Lv B (2020) Amorphous Cr2WO6-modified WO3 nanowires with a large specific surface area and rich Lewis acid sites: a highly efficient catalyst for oxidative desulfurization. ACS Appl Mater Interfaces 12(34):38140–38152

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jansen JA, Yang F (2019) Electrospraying: possibilities and challenges of engineering carriers for biomedical applications- a mini review. Front Chem 7:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson MP, Schwarzman MR (2009) Green chemistry: terminology and principles response. Environ Health Perspect 117:A386–A434

    PubMed Central  Google Scholar 

  • Wu ML, Chen DH, Huang TC (2001a) Synthesis of au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883

    Article  CAS  Google Scholar 

  • Wu ML, Chen DH, Huang TC (2001b) Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions. J Colloid Interface Sci 243:102–108

    Article  CAS  Google Scholar 

  • Zhang X, Chan KY (2003) Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem Mater 15:451–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S., Bhargava, A. (2022). Green Synthesis of Nanoparticles. In: Green Nanoparticles: The Future of Nanobiotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-7106-7_4

Download citation

Publish with us

Policies and ethics

Navigation