Numerical Simulation of a Finned-Surface Prismatic Lithium-Ion Battery Thermal Management System

  • Conference paper
  • First Online:
Smart Technologies for Energy, Environment and Sustainable Development, Vol 1

Abstract

In today’s world, transportation has become a major problem for environmental pollution as a greater amount of CO2 has been released from conventional internal engine vehicles. An electric vehicle (EV) is the best alternative to conventional vehicles to reduce emissions and keep the environment green. Lithium-ion batteries owing to its advantages of high energy and power density are the most suitable cells for electric and hybrid electric vehicles (HEVs). Still, the performance of EVs suffered from low efficiency due to the internal heat generation of batteries. The performance of Li-ion batteries is highly sensitive to temperature; hence, a battery thermal management system (BTMS) is essential for battery packs of EVs and HEVs. In this article, a numerical study has been conducted on a single prismatic lithium-ion battery cell. Fins are mounted on the surface of the battery which helps to reduce the maximum temperature rise of the cell by increasing the heat transfer area. The location and positioning of fins on the battery surface define the novelty of the current work, and the simulation results showed that there is a large temperature drop of 13.278 ℃ with the proposed design of BTMS compared to the natural convection cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 249.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 249.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Kim, J. Oh, H. Lee, Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 149, 192–212 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.020

    Article  Google Scholar 

  2. W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, Y. Lai, A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 182, 262–281 (2019). https://doi.org/10.1016/j.enconman.2018.12.051

    Article  Google Scholar 

  3. C. Lin, S. Xu, G. Chang, J. Liu, Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets. J. Power Sources 275, 742–749 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.068

    Article  Google Scholar 

  4. R. Mahamud, C. Park, Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J. Power Sources 196, 5685–5696 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.076

    Article  Google Scholar 

  5. S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: a review. Prog. Nat. Sci. Mater. Int. 28, 653–666 (2018). https://doi.org/10.1016/j.pnsc.2018.11.002

    Article  Google Scholar 

  6. A.A. Pesaran, M. Keyser, G. Kim, S. Santhanagopalan, K. Smith, Tools for designing thermal management of batteries in electric drive vehicles battery temperature in xEVs. Adv. Automot. Batter Conf. (2013). https://doi.org/10.2172/1064502

    Article  Google Scholar 

  7. C. Zhao, A.C.M. Sousa, F. Jiang, Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow. Int. J. Heat Mass Transf. 129, 660–670 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.017

    Article  Google Scholar 

  8. Z. Rao, Thermal performance of battery thermal management system using composite matrix coupled with mini-channel 1–10 (2019). https://doi.org/10.1002/est2.59

  9. A. Greco, X. Jiang, D. Cao, An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. J. Power Sources 278, 50–68 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.027

  10. M.R. Giuliano, A.K. Prasad, S.G. Advani, Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries. J. Power Sources 216, 345–352 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.074

    Article  Google Scholar 

  11. L. Fan, J.M. Khodadadi, A.A. Pesaran, A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 238, 301–312 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.050

    Article  Google Scholar 

  12. H. Park, A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J. Power Sources 239, 30–36 (2013). https://doi.org/10.1016/j.jpowsour.2013.03.102

    Article  Google Scholar 

  13. Y. Kitagawa, K. Kato, M. Fukui, Analysis and experimentation for effective cooling of Li-ion batteries. Procedia Technol. 18, 63–67 (2014). https://doi.org/10.1016/j.protcy.2014.11.014

    Article  Google Scholar 

  14. Z. Lu, X.Z. Meng, L.C. Wei, W.Y. Hu, L.Y. Zhang, L.W. **, Thermal management of densely-packed EV battery with forced air cooling strategies. Energy Procedia 88, 682–688 (2016). https://doi.org/10.1016/j.egypro.2016.06.098

    Article  Google Scholar 

  15. L.H. Saw, Y. Ye, A.A.O. Tay, W.T. Chong, S.H. Kuan, M.C. Yew, Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl. Energy 177, 783–792 (2016). https://doi.org/10.1016/j.apenergy.2016.05.122

    Article  Google Scholar 

  16. K. Chen, S. Wang, M. Song, L. Chen, Structure optimization of parallel air-cooled battery thermal management system. Int. J. Heat Mass Transf. 111, 943–952 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.026

    Article  Google Scholar 

  17. K. Chen, Y. Chen, Y. She, M. Song, S. Wang, L. Chen, Construction of effective symmetrical air-cooled system for battery thermal management. Appl. Therm. Eng. 166, 114679 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114679

  18. Y. Huo, Z. Rao, X. Liu, J. Zhao, Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers. Manag. 89, 387–395 (2015). https://doi.org/10.1016/j.enconman.2014.10.015

    Article  Google Scholar 

  19. W. Tong, K. Somasundaram, E. Birgersson, A.S. Mujumdar, C. Yap, Numerical investigation of water cooling for a lithium-ion bipolar battery pack. Int. J. Therm. Sci. 94, 259–269 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.03.005

    Article  Google Scholar 

  20. S. Basu, K.S. Hariharan, S.M. Kolake, T. Song, D.K. Sohn, T. Yeo, Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Appl. Energy 181, 1–13 (2016). https://doi.org/10.1016/j.apenergy.2016.08.049

    Article  Google Scholar 

  21. S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, M. Fowler, Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. Int. J. Heat Mass Transf. 101, 1093–1102 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.126

    Article  Google Scholar 

  22. U.N. Temel, Passive thermal management of a simulated battery pack at different climate conditions. Appl. Therm. Eng. 158, 113796 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113796

  23. S. Park, D.S. Jang, D.C. Lee, S.H. Hong, Y. Kim, Simulation on cooling performance characteristics of a refrigerant-cooled active thermal management system for lithium ion batteries. Int. J. Heat Mass Transf. 135, 131–141 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.109

    Article  Google Scholar 

  24. F. Bai, M. Chen, W. Song, Q. Yu, Y. Li, Z. Feng, Y. Ding, Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate. Energy 167, 561–574 (2019). https://doi.org/10.1016/j.energy.2018.10.137

    Article  Google Scholar 

  25. A. Verma, S. Shashidhara, D. Rakshit, A comparative study on battery thermal management using phase change material (PCM) (Elsevier Ltd., 2019)

    Google Scholar 

  26. X. Luo, Q. Guo, X. Li, Z. Tao, S. Lei, J. Liu, L. Kang, D. Zheng, Z. Liu, Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries. Renew. Energy 145, 2046–2055 (2020). https://doi.org/10.1016/j.renene.2019.07.112

    Article  Google Scholar 

  27. S. Arora, K. Tammi, A hybrid thermal management system with negative parasitic losses for electric vehicle battery packs. ASME Int. Mech. Eng. Congr. Expo. Proc. 6A-144113, 1–6 (2018). https://doi.org/10.1115/IMECE2018-86111

  28. S. Arora, A. Kapoor, W. Shen, A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse. J. Power Sources 378, 759–775 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.030

    Article  Google Scholar 

  29. H. Zhang, X. Wu, Q. Wu, S. Xu, Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration. Appl. Therm. Eng. 159, 113968 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113968

  30. K.S. Kshetrimayum, Y.G. Yoon, H.R. Gye, C.J. Lee, Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Appl. Therm. Eng. 159, 113797 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113797

  31. C. Lan, J. Xu, Y. Qiao, Y. Ma, Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 101, 284–292 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.070

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tete, P., Kedar, P., Gupta, M., Joshi, S. (2022). Numerical Simulation of a Finned-Surface Prismatic Lithium-Ion Battery Thermal Management System. In: Kolhe, M.L., Jaju, S.B., Diagavane, P.M. (eds) Smart Technologies for Energy, Environment and Sustainable Development, Vol 1. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6875-3_64

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6875-3_64

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6874-6

  • Online ISBN: 978-981-16-6875-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation