Registration of Medical Image Sequences Using Auto-differentiation

  • Conference paper
  • First Online:
Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 810))

  • 109 Accesses

Abstract

This paper focuses on image registration using the automatic differentiation of deep learning frameworks. Specifically, a method for the registration of image sequences is proposed and tested on retinal video ophthalmoscopic data and brain DCE MR images. PyTorch auto-differentiation has been used as a core of an optimisation tool to find the optimal image transformation parameters. It allows us to easily design a loss function for our registration tasks. The image registration was achieved by simultaneous registration of all images using a global loss function without the need of the reference frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Machine Vision and Applications 31(1), 1–18 (2020)

    Google Scholar 

  2. Keszei, A.P., Berkels, B., Deserno, T.M.: Survey of non-rigid registration tools in medicine. Journal of digital imaging 30(1), 102–116 (2017)

    Google Scholar 

  3. Ketcha, M.D., De Silva, T., Uneri, A., Kleinszig, G., Vogt, S., Wolinsky, J.P., Siewerdsen, J.H.: Automatic masking for robust 3d-2d image registration in image-guided spine surgery. In: Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 9786, pp. 98–104. SPIE (2016)

    Google Scholar 

  4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  5. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE transactions on medical imaging 29(1), 196–205 (2009)

    Google Scholar 

  6. Kolar, R., Tornow, R., Odstrcilik, J., Liberdova, I., et al.: Registration of retinal sequences from new video-ophthalmoscopic camera. Biomedical engineering online 15(1), 1–17 (2016)

    Google Scholar 

  7. Kolar, R., Vicar, T., Odstrcilik, J., Valterova, E., Skorkovska, K., Kralik, M., Tornow, R.P.: Multispectral retinal video-ophthalmoscope with fiber optic illumination. Journal of Biophotonics 15(9), e202200094 (2022)

    Google Scholar 

  8. Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 661–670 (2014)

    Google Scholar 

  9. McCormick, M., Liu, X., Ibanez, L., Jomier, J., Marion, C.: Itk: enabling reproducible research and open science. Frontiers in Neuroinformatics 8 (2014), https://www.frontiersin.org/articles/10.3389/fninf.2014.00013

  10. Nogueira, F.: Bayesian Optimization: Open source constrained global optimization tool for Python (2014), https://github.com/fmfn/BayesianOptimization

  11. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  12. Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open source differentiable computer vision library for pytorch. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3674–3683 (2020)

    Google Scholar 

  13. Sandkühler, R., Jud, C., Andermatt, S., Cattin, P.C.: Airlab: autograd image registration laboratory. ar**v preprint ar**v:1806.09907 (2018)

  14. Shamonin, D.P., Bron, E.E., Lelieveldt, B.P., Smits, M., Klein, S., Staring, M., Initiative, A.D.N.: Fast parallel image registration on cpu and gpu for diagnostic classification of alzheimer’s disease. Frontiers in neuroinformatics 7,  50 (2014)

    Google Scholar 

  15. Tornow, R.P., Odstrcilik, J., Kolar, R.: Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed. Opt. Express 9(12), 6237–6254 (2018)

    Google Scholar 

  16. **ao, H., Teng, X., Liu, C., Li, T., Ren, G., Yang, R., Shen, D., Cai, J.: A review of deep learning-based three-dimensional medical image registration methods. Quantitative Imaging in Medicine and Surgery 11(12), 4895 (2021)

    Google Scholar 

  17. Xu, R., Chen, Y.W., Tang, S.Y., Morikawa, S., Kurumi, Y.: Parzen-window based normalized mutual information for medical image registration. IEICE transactions on information and systems 91(1), 132–144 (2008)

    Google Scholar 

  18. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and vision computing 21(11), 977–1000 (2003)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Czech Science Foundation project no. 18-24089S. Computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the programme Projects of Large Research, Development, and Innovation Infrastructures. The authors also acknowledge the contribution of St. Anne’s University Hospital in Brno, which provided MRI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Jakubicek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vicar, T., Jakubicek, R., Chmelik, J., Kolar, R. (2023). Registration of Medical Image Sequences Using Auto-differentiation. In: Su, R., Zhang, Y., Liu, H., F Frangi, A. (eds) Medical Imaging and Computer-Aided Diagnosis. MICAD 2022. Lecture Notes in Electrical Engineering, vol 810. Springer, Singapore. https://doi.org/10.1007/978-981-16-6775-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6775-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6774-9

  • Online ISBN: 978-981-16-6775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation