Application of Nanoparticles in Soft Tissue Engineering

  • Chapter
  • First Online:
Application of Nanoparticles in Tissue Engineering
  • 229 Accesses

Abstract

Tissue engineering is an interdisciplinary approach that integrates several fields of study such as biology, biochemistry, chemistry, nanotechnology, engineering, and material science. Three components are commonly found in tissue engineering: cells that are capable of tissue repair, a scaffold that supports the proliferation of the cells impregnated on them, and bioactive molecules that will synchronize the architecture of desired tissue. The challenging task of tissue engineering is a scarcity of suitable biomaterial for scaffold formation, below-par proliferation of the cells on the scaffolds, controlled delivery of bioactive components in accordance with the requirement of the cells and lack of techniques that enable the formation of the suitable 3D architecture of the tissue. Size-dependent unique physiochemical properties of the nanoparticles could potentially fill the gaps in tissue engineering research. Nanoparticles and the nanomaterials such as nanotubes, nanowires, and nanowhiskers have been successfully engineered to produce suitable scaffolds that provide a distinct environment for individual cell types to proliferate and differentiate into matured tissues. This chapter presents an overview of the application of nanomaterials and the challenges involved in the application of nanomaterials in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aalders J, Léger L, Piras D, van Hengel J, Ledda S (2021) Use of transparent liquid marble: microbioreactor to culture cardiospheres. Methods Mol Biol 2273:85–102

    Article  CAS  PubMed  Google Scholar 

  • Abdelrasoul GN, Farkas B, Romano I, Diaspro A, Beke S (2015) Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: synthesis, characterization, and photothermal effect. Mater Sci Eng C 56:305–310

    Article  CAS  Google Scholar 

  • Abou EA, Knowles JC (2008) Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci Mater Med 19(1):377–386

    Article  CAS  Google Scholar 

  • Afewerki S, Magalhães LSSM, Silva ADR, Stocco TD, Silva Filho EC, Marciano FR, Lobo AO (2019) Bioprinting a synthetic smectic clay for orthopedic applications. Adv Healthc Mater 8(13):e1900158

    Article  PubMed  CAS  Google Scholar 

  • Ahn SI et al (2020) Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun 11(1):175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainslie KM, Bachelder EM, Borkar S, Zahr AS, Sen A, Badding JV, Pishko MV (2007) Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). Langmuir 23:747–754

    Article  CAS  PubMed  Google Scholar 

  • Akram Z, Aati S, Ngo H, Fawzy A (2021) pH-dependent delivery of chlorhexidine from PGA grafted mesoporous silica nanoparticles at resin-dentin interface. J Nanobiotechnol 19(1):43

    Article  CAS  Google Scholar 

  • Alexander JW (2009) History of the medical use of silver. Surg Infect 10:289–292

    Article  Google Scholar 

  • Allaker RP (2012) The use of antimicrobial nanoparticles to control oral infections. In: Nano-antimicrobials: progress and prospects, pp 395–425

    Chapter  Google Scholar 

  • Allaker RP, Memarzadeh K (2014) Nanoparticles and the control of oral infections. Int J Antimicrob Agents 43(2):95–104

    Article  CAS  PubMed  Google Scholar 

  • Antman-Passig M, Shefi O (2016) Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett 16:2567–2573

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Ogihara N, Tanaka M, Haniu H, Saito N (2020) Carbon nanotube-based biomaterials for orthopaedic applications. J Mater Chem B 8(40):9227–9238

    Article  CAS  PubMed  Google Scholar 

  • Arjunan A, Demetriou M, Baroutaji A, Wang C (2020) Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater 102:103517

    Article  CAS  PubMed  Google Scholar 

  • Armijo LM et al (2020) Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnol 18(1):35

    Article  CAS  Google Scholar 

  • Arslan A, Şimşek M, Aldemir SD, Kazaroǧlu NM, Gumuşderelioǧlu M (2014) Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process. J Biomater Sci Polym Ed 25:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Arzaghi H, Adel B, Jafari H, Askarian-Amiri S, Shiralizadeh Dezfuli A, Akbarzadeh A, Pazoki-Toroudi H (2020) Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review. Rev Neurosci 31(8):843–872

    Article  Google Scholar 

  • Asgary V et al (2014) Evaluation of the effect of silver nanoparticles on induction of neutralizing antibodies against inactivated rabies virus. Vaccine Research 1(1)

    Google Scholar 

  • Ashammakhi N, Ndreu A, Yang Y, Ylikauppila H, Nikkola L (2012) Nanofiber-based scaffolds for tissue engineering. Eur J Plast Surg 35:135–149

    Article  Google Scholar 

  • Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A (2019) Advancing frontiers in bone bioprinting. Adv Healthc Mater 8(7):e1801048

    Article  PubMed  CAS  Google Scholar 

  • Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177–200

    Article  CAS  PubMed  Google Scholar 

  • Augustine A, Augustine R, Hasan A, Raghuveeran V, Rouxel D, Kalarikkal N, Thomas S (2019) Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride–trifluoroethylene) scaffolds for bone tissue engineering applications. J Mater Sci Mater Med 30:1–13

    Article  CAS  Google Scholar 

  • Babiker F, Benter IF, Akhtar S (2020) Nanotoxicology of dendrimers in the mammalian heart: ex vivo and in vivo administration of g6 pamam nanoparticles impairs recovery of cardiac function following ischemia-reperfusion injury. Int J Nanomedicine 15:4393–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabás R, de Souza Ávila E, Ladeira LO, Antônio LM, Tötös R, Simedru D, Bizo L, Cadar O (2020) Graphene oxides/carbon nanotubes–hydroxyapatite nanocomposites for biomedical applications. Arab J Sci Eng 45:219–227

    Article  CAS  Google Scholar 

  • Bier A et al (2018) Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials 174:67–78

    Article  CAS  PubMed  Google Scholar 

  • Boyer C et al (2018) Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 65:112–122

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Chen MM, Liu Y, Liu YY, Huang YQ, Wang JH, Chen J, Di ZQQ (2015) Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids Surf B Biointerfaces 136:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yu Y, Zhu B, Han J, Liu C, Liu C, Miao L, Fakudze S (2021) Synthesis of biocompatible and highly fluorescent N-doped silicon quantum dots from wheat straw and ionic liquids for heavy metal detection and cell imaging. Sci Total Environ 765:142754

    Article  CAS  PubMed  Google Scholar 

  • Chien KR, Zangi L, Lui KO (2015) Synthetic chemically modified mRNA (ModRNA): toward a new technology platform for cardiovascular biology and medicine. Cold Spring Harb Perspect Med 5(1):a014035

    Article  PubMed Central  CAS  Google Scholar 

  • Ciofani G, Genchi GG, Mattoli V (2012) ZnO nanowire arrays as substrates for cell proliferation and differentiation. Mater Sci Eng C 32:341–347

    Article  CAS  Google Scholar 

  • Colino CI, Lanao JM, Gutierrez-Millan C (2021) Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections. Mater Sci Eng C 121:111843

    Article  CAS  Google Scholar 

  • Cristallini C, Vitale E, Giachino C, Rastaldo R (2020) Nanoengineering in cardiac regeneration: looking back and going forward. Nano 10(8):1587

    CAS  Google Scholar 

  • Cruz LJ et al (2021) PLGA-nanoparticles for intracellular delivery of the CRISPR-complex to elevate fetal globin expression in erythroid cells. Biomaterials 268:120580

    Article  CAS  PubMed  Google Scholar 

  • da Silva TN, Gonçalves RP, Rocha CL, Archanjo BS, Barboza CAG, Pierre MBR, Reynaud F, de Souza Picciani PH (2019) Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration. Mater Sci Eng C 97:602–612

    Article  CAS  Google Scholar 

  • Danelon M, Pessan JP, Neto FNS, De Camargo ER, Delbem ACB (2015) Effect of toothpaste with nano-sized trimetaphosphate on dental caries: in situ study. J Dent 43(7):806–813

    Article  CAS  PubMed  Google Scholar 

  • Das S, Basu B (2019) An overview of hydrogel-based bioinks for 3D bioprinting of soft tissues. J Indian Inst Sci 99:405–428

    Article  Google Scholar 

  • Davoodi E, Zhianmanesh M, Montazerian H, Milani AS, Hoorfar M (2020) Nano-porous anodic alumina: fundamentals and applications in tissue engineering. J Mater Sci Mater Med 31:1–16

    Article  CAS  Google Scholar 

  • De Santis R et al (2015) Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 11:1236–1246

    Article  PubMed  CAS  Google Scholar 

  • De SR, Mantilaka M et al (2017) Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym 157:739–747

    Article  CAS  Google Scholar 

  • Deeken CR, Fox DB, Bachman SL, Ramshaw BJ, Grant SA (2011) Characterization of bionanocomposite scaffolds comprised of amine-functionalized gold nanoparticles and silicon carbide nanowires crosslinked to an acellular porcine tendon. J Biomed Mater Res Part B Appl Biomater 97 B:334–344

    Article  CAS  Google Scholar 

  • Deng Y, Zhang X, Zhao Y, Liang S, Xu A, Gao X, Deng F, Fang J, Wei S (2014) Peptide-decorated polyvinyl alcohol/hyaluronan nanofibers for human induced pluripotent stem cell culture. Carbohydr Polym 101:36–39

    Article  CAS  PubMed  Google Scholar 

  • Dou Y, Wu C, Chang J (2012) Preparation, mechanical property and cytocompatibility of poly(L-lactic acid)/calcium silicate nanocomposites with controllable distribution of calcium silicate nanowires. Acta Biomater 8:4139–4150

    Article  CAS  PubMed  Google Scholar 

  • Egawa T, Inagaki Y, Akahane M, Furukawa A, Inoue K, Ogawa M, Tanaka Y (2019) Silicate-substituted strontium apatite nano coating improves osteogenesis around artificial ligament. BMC Musculoskelet Disord 20(1):396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabbro A, Cellot G, Prato M, Ballerini L (2011) Interfacing neurons with carbon nanotubes: (Re)engineering neuronal signaling. In: Progress in brain research, vol 194. Elsevier B.V, pp 241–252

    Google Scholar 

  • Fan L et al (2021) Ultrasensitive gastric cancer circulating tumor cellular CLDN18.2 RNA detection based on a molecular beacon. Anal Chem 93(2):665–670

    Article  CAS  PubMed  Google Scholar 

  • Favretto CO, Delbem ACB, Moraes JCS, Camargo ER, de Toledo PTA, Pedrini D (2018) Dentinal tubule obliteration using toothpastes containing sodium trimetaphosphate microparticles or nanoparticles. Clin Oral Investig 22(9):3021–3029

    Article  PubMed  Google Scholar 

  • Favretto CO, Delbem ACB, Toledo PTA, Pedrini D (2021) Hydraulic conductance of dentin after treatment with fluoride toothpaste containing sodium trimetaphosphate microparticles or nanoparticles. Clin Oral Investig 25(4):2069–2076

    Article  PubMed  Google Scholar 

  • Formentín P, Catalán PL, Fernández-Castillejo S, Solà R, Marsal LF (2018) Collagen and fibronectin surface modification of nanoporous anodic alumina and macroporous silicon for endothelial cell cultures. J Biol Eng 12:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S (2018) Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine 13:283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt LC, Jell GMR, Boccaccini AR (2007) Titanium dioxide (TiO2) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 18:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35

    Article  CAS  PubMed  Google Scholar 

  • Goonoo N, Jeetah R, Bhaw-Luximon A, Jhurry D (2015) Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. Eur J Pharm Biopharm 97:371–391

    Article  CAS  PubMed  Google Scholar 

  • Gopikrishnan R et al (2011) Epitaxial growth of the Zinc Oxide nanorods, their characterization and in vitro biocompatibility studies. J Mater Sci Mater Med 22:2301–2309

    Article  CAS  PubMed  Google Scholar 

  • Grimm S et al (2010) Cellular interactions of biodegradable nanorod arrays prepared by nondestructive extraction from nanoporous alumina. J Mater Chem 20:3171–3177

    Article  CAS  Google Scholar 

  • Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6(5):915–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Saxena V, Pandey LM (2018) Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 111:923–934

    Article  CAS  PubMed  Google Scholar 

  • Hickey DJ, Ercan B, Sun L, Webster TJ (2015) Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater 14:175–184

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Cai K, Li J, Chen X, Lai M et al (2013) Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomedicine 8:3619–3630

    PubMed  PubMed Central  Google Scholar 

  • Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass ES, Soliman HA, Farghali AA (2019) Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacother 109:2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Hu ZJ, Li ZL, Hu LY, He W, Liu RM, Qin Y-S, Wang SM (2012) The in vivo performance of small-caliber nanofibrous polyurethane vascular grafts. BMC Cardiovasc Disord 12:1–11

    Article  CAS  Google Scholar 

  • Hu C, Sun J, Long C, Wu L, Zhou C, Zhang X (2019a) Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev 8(1):396–404

    Article  CAS  Google Scholar 

  • Hu X, Liang R, Li J, Liu Z, Sun G (2019b) Mechanically strong hydrogels achieved by designing homogeneous network structure. Mater Des 163:107547

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding T, Liu J, Zhao H (2020) Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 8:990

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang B (2020) Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanufacturing Rev 5:3

    Article  Google Scholar 

  • Huang H, Walker C, Nanda A et al (2013) Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders. ACS Nano 7(4):2988–2998

    Article  CAS  PubMed  Google Scholar 

  • Huang CY, Huang TH, Kao CT, Wu YH, Chen WC, Shie MY (2017) Mesoporous calcium silicate nanoparticles with drug delivery and odontogenesis properties. J Endod 43(1):69–76

    Article  PubMed  Google Scholar 

  • Ibrahim MS, AlQarni FD, Al-Dulaijan YA, Weir MD, Oates TW, Xu HHK, Melo MAS (2018) Tuning nano-amorphous calcium phosphate content in novel rechargeable antibacterial dental sealant. Materials (Basel). 11(9):1544

    Article  PubMed Central  CAS  Google Scholar 

  • Jahanizadeh S, Yazdian F, Marjani A, Omidi M, Rashedi H (2017) Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. Int J Biol Macromol 105(Pt 1):757–763

    Article  CAS  PubMed  Google Scholar 

  • Jasenská D et al (2021) Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr Polym 253:117244

    Article  PubMed  CAS  Google Scholar 

  • Jayaramudu T, Varaprasad K, Pyarasani RD, Reddy KK, Kumar KD, Akbari-Fakhrabadi A, Mangalaraja RV, Amalraj J (2019) Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int J Biol Macromol 128:499–508

    Article  CAS  PubMed  Google Scholar 

  • Jones N, Ray B et al (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Karimi S, Bagher Z, Najmoddin N, Simorgh S, Pezeshki-Modaress M (2021) Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application. Int J Biol Macromol 167:796–806

    Article  CAS  PubMed  Google Scholar 

  • Karkan SF, Rahbarghazi R, Davaran S, Kaleybar LS, Khoshfetrat AB, Heidarzadeh M, Zolali E, Akbarzadeh A (2021) Electrospun polyurethane/poly(ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions. Microvasc Res 133:104073

    Article  CAS  PubMed  Google Scholar 

  • Khajuria DK, Zahra SF, Razdan R (2018) Effect of locally administered novel biodegradable chitosan based risedronate/zinc-hydroxyapatite intra-pocket dental film on alveolar bone density in rat model of periodontitis. J Biomater Sci Polym Ed 29(1):74–91

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Sheikh FA, Ju HW, Park HJ, Moon BM, Lee OJ, Park CH (2014) 3D silk fibroin scaffold incorporating titanium dioxide (TiO2) nanoparticle (NPs) for tissue engineering. Int J Biol Macromol 68:158–168

    Article  CAS  PubMed  Google Scholar 

  • Kim KI, Kim DA, Patel KD, Shin US, Kim HW, Lee JH, Lee HH (2019) Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep 9(1):4921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koutsopoulos S (2012) Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv Drug Deliv Rev 64:1459–1476

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Desagani D, Chandran G, Ghosh NN, Karthikeyan G, Waigaonkar S, Ganguly A (2018) Biocompatible agarose-chitosan coated silver nanoparticle composite for soft tissue engineering applications. Artif Cells Nanomed Biotechnol 46:637–649

    Article  CAS  PubMed  Google Scholar 

  • Laurenti M, Cauda V (2017) ZnO nanostructures for tissue engineering applications. Nano 7:374

    Google Scholar 

  • Lee J, Kang BS, Hicks B, Chancellor TF, Chu BH, Wang HT, Keselowsky BG, Ren F, Lele TP (2008) The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29:3743–3749

    Article  CAS  PubMed  Google Scholar 

  • Leszczak V, Place LW, Franz N, Popat KC, Kipper MJ (2014) Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies. ACS Appl Mater Interfaces 6:9328–9337

    Article  CAS  PubMed  Google Scholar 

  • Li X-P, Qu K-Y, Zhou B, Zhang F, Wang Y-Y, Abodunrin OD, Zhu Z, Huang N-P (2021) Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids Surf B Biointerfaces 205:111844

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Chen J, Zhuang J, Zhu P (2018) Fabrication of engineered nanoparticles on biological macromolecular (PEGylated chitosan) composite for bio-active hydrogel system in cardiac repair applications. Int J Biol Macromol 117:553–558

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zou T, Yao Q, Zhang Y, Zhao Y, Zhang C (2021a) Hypoxia-mimicking cobalt-doped multi-walled carbon nanotube nanocomposites enhance the angiogenic capacity of stem cells from apical papilla. Mater Sci Eng C 120:111797

    Article  CAS  Google Scholar 

  • Liu CJ, Yao L, Hu YM, Zhao BT (2021b) Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomedicine 16:741–752

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano O et al (2020) Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part Fibre Toxicol 17:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacIa N, Bresoli-Obach R, Nonell S, Heyne B (2019) Hybrid silver nanocubes for improved plasmon-enhanced singlet oxygen production and inactivation of bacteria. J Am Chem Soc 141(1):684–692

    Article  CAS  PubMed  Google Scholar 

  • Mackevica A, Olsson ME, Hansen SF (2017) The release of silver nanoparticles from commercial toothbrushes. J Hazard Mater 322(Pt A):270–275

    Article  CAS  PubMed  Google Scholar 

  • Maeda T (2019) Structures and applications of thermoresponsive hydrogels and nanocomposite-hydrogels based on copolymers with poly(Ethylene glycol) and poly(lactide-co-glycolide) blocks. Bioengineering 6(4):107

    Article  CAS  PubMed Central  Google Scholar 

  • Magalhães APR et al (2020) Yttria-stabilized tetragonal zirconia polycrystal/resin luting agent bond strength: influence of Titanium dioxide nanotubes addition in both materials. J Prosthodont Res 64(4):408–416

    Article  PubMed  Google Scholar 

  • Mahapatra C, Singh RK, Lee JH, Jung J, Hyun JK, Kim HW (2017) Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions. Acta Biomater 50:142–153

    Article  CAS  PubMed  Google Scholar 

  • Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D’Amico F, Mulligan D, Geibel JP (2020) Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci 3(3):203–213

    Google Scholar 

  • Manikandan V, Velmurugan P, Park JH, Chang WS, Park YJ, Jayanthi P, Cho M, Oh BT (2017) Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech 7(1):72

    Article  PubMed  PubMed Central  Google Scholar 

  • Manjumeena R, Elakkiya T, Duraibabu D, Feroze AA, Kalaichelvan PT, Venkatesan R (2015) “Green” biocompatible organic-inorganic hybrid electrospun nanofibers for potential biomedical applications. J Biomater Appl 29:1039–1055

    Article  CAS  PubMed  Google Scholar 

  • Mann S (2008) Life as a Nanoscale Phenomenon. Angew Chemie Int Ed 47:5306–5320

    Article  CAS  Google Scholar 

  • Martelli C, King A, Simon T, Giamas G (2020) Graphene-induced transdifferentiation of cancer stem cells as a therapeutic strategy against glioblastoma. ACS Biomater Sci Eng 6(6):3258–3269

    Article  CAS  PubMed  Google Scholar 

  • Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P (2020) Angiogenesis in tissue engineering: as nature intended? Front Bioeng Biotechnol 8:188

    Article  PubMed  PubMed Central  Google Scholar 

  • Md Jani AM, Losic D, Voelcker NH (2013) Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci 58:636–704

    Article  CAS  Google Scholar 

  • Medeiros S, Santos A, Fessi H et al (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403(1–2):139–161

    Article  CAS  PubMed  Google Scholar 

  • Mehedi Hasan M, Nuruzzaman Khan M, Haque P, Rahman MM (2018) Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Int J Biol Macromol 117:1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Weil T, Kirchhoff F, Münch J (2014) Peptide nanofibrils as enhancers of retroviral gene transfer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:438–451

    Article  CAS  PubMed  Google Scholar 

  • Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Monteiro N, Ribeiro D, Martins A, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM (2014) Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano 8:8082–8094

    Article  CAS  PubMed  Google Scholar 

  • Mussano F, Genova T, Serra F et al (2018) Nano-pore size of alumina affects osteoblastic response. Int J Mol Sci 19(2):528

    Article  PubMed Central  CAS  Google Scholar 

  • Nasri-Nasrabadi B, Kaynak A, Heidarian P, Komeily-Nia Z, Mehrasa M, Salehi H, Kouzani AZ (2018) Sodium alginate/magnesium oxide nanocomposite scaffolds for bone tissue engineering. Polym Adv Technol 29:2553–2559

    Article  CAS  Google Scholar 

  • Nguyen S, Escudero C, Sediqi N, Smistad G, Hiorth M (2017) Fluoride loaded polymeric nanoparticles for dental delivery. Eur J Pharm Sci 104:326–334

    Article  CAS  PubMed  Google Scholar 

  • Nie X, Wang DA (2018) Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Biomater Sci 6(11):2798–2811

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Gil CJ, Hwang B, Theus AS, Perez L, Tomov ML, Bauser-Heaton H, Serpooshan V (2020) Biomechanical factors in three-dimensional tissue bioprinting. Appl Phys Rev 7(4):041319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirwan VP, Filova E, Al-Kattan A, Kabashin AV, Fahmi A (2021) Smart electrospun hybrid nanofibers functionalized with ligand-free titanium nitride (Tin) nanoparticles for tissue engineering. Nano 11:1–17

    Google Scholar 

  • Noormohammadi F, Nourany M, Mir Mohamad Sadeghi G, Wang PY, Shahsavarani H (2021) The role of cellulose nanowhiskers in controlling phase segregation, crystallization and thermal stimuli responsiveness in PCL-PEGx-PCL block copolymer-based PU for human tissue engineering applications. Carbohydr Polym 252:117219

    Article  CAS  PubMed  Google Scholar 

  • Okolo C, Rafique R, Iqbal SS, Subhani T, Saharudin MS, Bhat BR, Inam F (2019) Customizable ceramic nanocomposites using carbon nanotubes. Molecules 24(17):3176

    Article  CAS  PubMed Central  Google Scholar 

  • Panáček A et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65–71

    Article  PubMed  CAS  Google Scholar 

  • Pandey A et al (2018) Enhanced tribological and bacterial resistance of carbon nanotube with ceria-and silver-incorporated hydroxyapatite biocoating. Nano 8(6):363

    Google Scholar 

  • Parisi L, Toffoli A, Ghiacci G, Macaluso GM (2018) Tailoring the interface of biomaterials to design effective scaffolds. J Funct Biomater 9(3):50

    Article  CAS  PubMed Central  Google Scholar 

  • Pei B, Wang W, Dunne N, Li X (2019) Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nano 9(10):1501

    CAS  Google Scholar 

  • Pichaiaukrit W, Thamrongananskul N, Siralertmukul K, Swasdison S (2019) Fluoride varnish containing chitosan demonstrated sustained fluoride release. Dent Mater J 38(6):1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Nair M (2013) Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One 8(4):e62241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM (2019) Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials (Basel) 12(11):1824

    Article  CAS  Google Scholar 

  • Pinky GS, Krishnakumar V, Sharma Y, Dinda AK, Mohanty S (2021) Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep 17(1):33–43

    Article  CAS  PubMed  Google Scholar 

  • Popescu-Pelin G et al (2020) Fish bone derived bi-phasic calcium phosphate coatings fabricated by pulsed laser deposition for biomedical applications. Mar Drugs 18(12):623

    Article  CAS  PubMed Central  Google Scholar 

  • Prakash R, Mishra RK, Ahmad A, Khan MA, Khan R, Raza SS (2021) Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation. Mater Sci Eng C 120:111700

    Article  CAS  Google Scholar 

  • Pratap B, Gupta RK, Bhardwaj B, Nag M (2019) Resin based restorative dental materials: characteristics and future perspectives. Jpn Dent Sci Rev 55(1):126–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Song J, Zheng W, Zhao X, Ouyang Y, Yuan W, Fan C (2018) 3D manufacture of gold nanocomposite channels facilitates neural differentiation and regeneration. Adv Funct Mater 28:1707077

    Article  CAS  Google Scholar 

  • Ratto F, Matteini P, Centi S, Rossi F, Pini R (2011) Gold nanorods as new nanochromophores for photothermal therapies. J Biophotonics 4:64–73

    Article  CAS  PubMed  Google Scholar 

  • Raura N, Garg A, Arora A, Roma M (2020) Nanoparticle technology and its implications in endodontics: a review. Biomater Res 24(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Reding B, Carter P, Qi Y, Li Z, Wu Y, Wannemuehler M, Bratlie KM, Wang Q (2021) Manipulate intestinal organoids with niobium carbide nanosheets. J Biomed Mater Res Part A 109:479–487

    Article  CAS  Google Scholar 

  • Rodriguez-Losada N et al (2020) Graphene oxide and reduced derivatives, as powder or film scaffolds, differentially promote dopaminergic neuron differentiation and survival. Front Neurosci 14:570409

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotenberg MY, Elbaz B, Nair V, Schaumann EN, Yamamoto N, Sarma N, Matino L, Santoro F, Tian B (2020) Silicon nanowires for intracellular optical interrogation with subcellular resolution. Nano Lett 20(2):1226–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotenberg MY, Schaumann EN, Prominski A, Tian B (2021) Silicon nanowires and optical stimulation for investigations of intraand intercellular electrical coupling. J Vis Exp (167):e61581

    Google Scholar 

  • Sampath M, Lakra R, Korrapati PS, Sengottuvelan B (2014) Curcumin loaded poly(lactic-co-glycolic) acid nanofiber for the treatment of carcinoma. Colloids Surf B Biointerfaces 117:128–134

    Article  CAS  PubMed  Google Scholar 

  • Saratale GD, Saratale RG, Benelli G et al (2017) Anti-diabetic potential of silver nanoparticles synthesized with argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci 28:1709–1727

    Article  CAS  Google Scholar 

  • Sarkar J, Gopal Khan G, Basumallick A (2007) Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bull Mater Sci 30:271–290

    Article  CAS  Google Scholar 

  • Shamma RN, Sayed RH, Madry H, Sayed EL, N.S., Cucchiarini M. (2022) Triblock copolymer bioinks in hydrogel 3D printing for regenerative medicine—a focus on PF127. Tissue Eng Part B Rev 28(2):451–463

    Article  CAS  PubMed  Google Scholar 

  • Shanks HR, Milani AH, Lu D, Saunders BR, Carney L, Adlam DJ, Hoyland JA, Blount C, Dickinson M (2019) Core-shell-shell nanoparticles for NIR fluorescence imaging and NRET swelling reporting of injectable or implantable gels. Biomacromolecules 20(7):2694–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevach M, Fleischer S, Shapira A, Dvir T (2014) Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett 14:5792–5796

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33:6644–6649

    Article  CAS  PubMed  Google Scholar 

  • Siqueira IAWB, Corat MAF, Cavalcanti BDN, Neto WAR, Martin AA, Bretas RES, Marciano FR, Lobo AO (2015) In vitro and in vivo studies of novel poly(D,L-lactic acid), superhydrophilic carbon nanotubes, and nanohydroxyapatite scaffolds for bone regeneration. ACS Appl Mater Interfaces 7(18):9385–9398

    Article  CAS  PubMed  Google Scholar 

  • Song W, Ge S (2019) Application of antimicrobial nanoparticles in dentistry. Molecules 24(6):1033

    Article  CAS  PubMed Central  Google Scholar 

  • Song W, Markel DC, Wang S, Shi T, Mao G, Ren W (2012) Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology 23:115101

    Article  PubMed  CAS  Google Scholar 

  • Song G, Zhu X, Chen R, Liao Q, Ding Y et al (2016) Influence of the precursor on the porous structure and CO2 adsorption characteristics of MgO. RSC Adv 6:19069–19077

    Article  CAS  Google Scholar 

  • Sridharan D, Palaniappan A, Blackstone BN, Powell HM, Khan M (2021) Electrospun aligned coaxial nanofibrous scaffold for cardiac repair. Methods Mol Biol 2193:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocco TD, Antonioli E, de Maria Vaz Elias C, Rodrigues BVM, de Brito Siqueira IAW, Ferretti M, Marciano FR, Lobo AO (2019) Cell viability of porous poly(D,L-lactic acid)/vertically aligned carbon nanotubes/nanohydroxyapatite scaffolds for osteochondral tissue engineering. Materials (Basel) 12(6):849

    Article  CAS  Google Scholar 

  • Su D, Jiang L, Chen X, Dong J, Shao Z (2016) Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets. ACS Appl Mater Interfaces 8(15):9619–9628

    Article  CAS  PubMed  Google Scholar 

  • Su W, Wang Z, Jiang J, Liu X, Zhao J, Zhang Z (2019) Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int J Nanomedicine 14:1835–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulka GD (2008) Highly ordered anodic porous alumina formation by self-organized anodizing. In: Nanostructured materials in electrochemistry. Wiley, pp 1–116

    Google Scholar 

  • Taccola L, Raffa V, Riggio C et al (2011) Zinc oxide nanoparticles as selective killers of proliferating cells. Int J Nanomedicine 6:1129–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tahereh F (2014) The effects of zinc oxide nanoparticles on differentiation of human mesenchymal stem cells to osteoblast. Nanomed J 1(5):308–314

    Google Scholar 

  • Teleanu DM, Negut I, Grumezescu V, Grumezescu AM, Teleanu RI (2019) Nanomaterials for drug delivery to the central nervous system. Nano 9(3):371

    CAS  Google Scholar 

  • Tolba E, Wang X, Wang S, Neufurth M, Ackermann M, Schröder HC, Müller WEG (2020) Amorphous polyphosphate and ca-carbonate nanoparticles improve the self-healing properties of both technical and medical cements. Biotechnol J 15(12):e2000101

    Article  PubMed  CAS  Google Scholar 

  • Turnbull G, Clarke J, Picard F, Zhang W, Riches P, Li B, Shu W (2020) 3D biofabrication for soft tissue and cartilage engineering. Med Eng Phys 82:13–39

    Article  PubMed  Google Scholar 

  • Umar M et al (2021) Synthesis and characterization of silver-coated polymeric scaffolds for bone tissue engineering: antibacterial and in vitro evaluation of cytotoxicity and biocompatibility. ACS Omega 6:4335–4346

    Article  CAS  Google Scholar 

  • Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS (2014) Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym 102:884–892

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Flores F, Castro-Lugo A, Ramírez OT, Palomares LA (2020) Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology 31(13):132002

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadke P, Chhabra R, Jain R, Dandekar P (2017) Silver-embedded starch-based nanofibrous mats for soft tissue engineering. Surf Interfaces 8:137–146

    Article  CAS  Google Scholar 

  • Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K (2009) Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res Part A 91:994–1005

    Article  CAS  Google Scholar 

  • Wang GJ, Lin YC, Hsu SH (2010) The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls. Biomed Microdevices 12:841–848

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HHK (2014) Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res 93(7):618–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Hui A, Zhao H, Ye X, Zhang C, Wang A, Zhang C (2020) A novel 3D-bioprinted porous nano attapulgite scaffolds with good performance for bone regeneration. Int J Nanomedicine 15:6945–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **a H, Li X, Gao W, Fu X, Fang RH, Zhang L, Zhang K (2018a) Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater 3:174–193

    Article  CAS  Google Scholar 

  • Zhong S, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL (2005) Formation of collagen—glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules 6:2998–3004

    Article  CAS  PubMed  Google Scholar 

  • **a XX, Xu Q, Hu X, Qin G, Kaplan DL (2011) Tunable self-assembly of genetically engineered silk-elastin-like protein polymers. Biomacromolecules 12:3844–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao S, Wang X, Liu X, Wang R, Deng C, Cui F (2013) Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers. J Nanosci Nanotechnol 13:4752–4758

    Article  CAS  PubMed  Google Scholar 

  • Wickham A, Vagin M, Khalaf H, Bertazzo S, Hodder P, Dånmark S, Bengtsson T, Altimiras J, Aili D (2016) Electroactive biomimetic collagen-silver nanowire composite scaffolds. Nanoscale 8:14146–14155

    Article  CAS  PubMed  Google Scholar 

  • Yadid M, Feiner R, Dvir T (2019) Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett 19:2198–2206

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  • **ng X, Cheng G, Yin C, Cheng X, Cheng Y, Ni Y, Zhou X, Deng H, Li Z (2020) Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. Arab J Chem 13:5526–5538

    Article  CAS  Google Scholar 

  • Yushau US, Almofeez L, Bozkurt A (2020) Novel polymer nanocomposites comprising triazole functional silica for dental application. SILICON 12:109–116

    Article  CAS  Google Scholar 

  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15:2555–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassel MO, Khattab MA (2017) Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J Adv Res 8(4):387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yan J, Mujtaba BM, Li Y, Wei H, Huang S (2021) The dual anti-caries effect of carboxymethyl chitosan nanogel loaded with chimeric lysin ClyR and amorphous calcium phosphate. Eur J Oral Sci 129(3):e12784

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Yang H, Li K, Yu J, Huang C (2017) Effects of chlorhexidine-encapsulated mesoporous silica nanoparticles on the anti-biofilm and mechanical properties of glass ionomer cement. Molecules 22(7):1225

    Article  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhu M, Zhu XX (2021) Functional fillers for dental resin composites. Acta Biomater 122:50–65

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Gangwar S (2019) A critical evaluation of tribological interaction for restorative materials in dentistry. Int J Polym Mater Polym Biomater 68:1005–1019

    Article  CAS  Google Scholar 

  • **a Y et al (2018b) Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol 46(sup1):423–433

    Article  CAS  PubMed  Google Scholar 

  • **a Y et al (2019) Iron oxide nanoparticles in liquid or powder form enhanced osteogenesis via stem cells on injectable calcium phosphate scaffold. Nanomedicine Nanotechnology. Biol Med 21:102069

    CAS  Google Scholar 

  • **a Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK (2018c) Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine Nanotechnology. Biol Med 14(1):35–45

    CAS  Google Scholar 

  • Yang Z et al (2021) PEGylated CuInS2/ZnS quantum dots inhibit neurite outgrowth by downregulating the NGF/p75NTR/MAPK pathway. Ecotoxicol Environ Saf 207:111378

    Article  CAS  PubMed  Google Scholar 

  • **ao L, Wu M, Yan F, **e Y, Liu Z, Huang H, Yang Z, Yao S, Cai L (2021) A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. Int J Biol Macromol 172:19–29

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhao M, Zhou D, Zheng T, Zhang H (2021) The application of multifunctional nanomaterials in Alzheimer’s disease: a potential theranostics strategy. Biomed Pharmacother 137:111360

    Article  CAS  PubMed  Google Scholar 

  • Wevers NR et al (2018) A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang D, Shen J, Fan J, Chen Y, Guo X (2020) Paracellular permeability changes induced by multi-walled carbon nanotubes in brain endothelial cells and associated roles of hemichannels. Toxicology 440:152491

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raja, N.S., Dash, M. (2022). Application of Nanoparticles in Soft Tissue Engineering. In: Afaq, S., Malik, A., Tarique, M. (eds) Application of Nanoparticles in Tissue Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-6198-3_3

Download citation

Publish with us

Policies and ethics

Navigation