Nanoparticles for Tissue Engineering: Type, Properties, and Characterization

  • Chapter
  • First Online:
Application of Nanoparticles in Tissue Engineering

Abstract

The multidisciplinary area of tissue engineering unifies various fields such as medical biology, engineering, and material science that focus on develo** biological alternatives to increase the functions of organs or tissue or to replace or repair the damaged tissue and organs. Though tissue engineering technique has progressed in the scientific field, it still confronts with various challenges; for example, insufficient synthesis of growth factors required for cell-to-cell communication, the toxicity of the biomaterials used, and inability to regulate the cellular functions are the major drawbacks in the field of tissue engineering. Therefore, there is an elevating concern about the significance of the proper insight into the behavior and nature of the nanoparticles. Nanoparticles due to their specific size-dependent characteristics have exhibited their potential in solving several challenges encountered by tissue engineering. However, in spite of the immense advancement of nanoparticles for their application, the complete potentiality of nanoparticles in resolving tissue engineering challenges is still to be analyzed. This chapter represents an outline of various categories of nanoparticles and their potent applications in the challenges of tissue engineering which are necessary to prevail by nanotechnology to attain its complete potentiality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adewuyi A, Lau WJ (2021) Nanomaterial development and its applications for emerging pollutant removal in water. In: Handbook of nanotechnology applications. Elsevier, pp 67–97

    Chapter  Google Scholar 

  • Akbulut M (2012) Nanoparticle-based lubrication systems. J Powder Metall Min 1(1):1–3

    Article  Google Scholar 

  • Ali A, Hira Zafar MZ, Ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aryaei A, Jayatissa AH, Jayasuriya AC (2014) Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. J Biomed Mater Res A 102(8):2704–2712

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192

    Article  CAS  PubMed  Google Scholar 

  • Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI (2010) Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci 107(51):22038–22043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, Cham, pp 33–93

    Chapter  Google Scholar 

  • Cao YC, ** R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    Article  CAS  PubMed  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Faivre D, Bennet M (2016) Magnetic nanoparticles line up. Nature 535(7611):235–236

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2020) Gold nanoparticles for biology and medicine. Spherical Nucleic Acids:55–90

    Google Scholar 

  • Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS (2010) Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B: Biointerfaces 77(2):240–245

    Article  CAS  PubMed  Google Scholar 

  • Guo D, **e G, Luo J (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47(1):013001

    Article  CAS  Google Scholar 

  • Hasan A, Memic A, Annabi N, Hossain M, Paul A, Dokmeci MR, Dehghani F, Khademhosseini A (2014a) Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater 10(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE (2018) Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 13:5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan A, Paul A, Memic A, Khademhosseini A (2015) A multilayered microfluidic blood vessel-like structure. Biomed Microdevices 17(5):1–3

    Article  CAS  Google Scholar 

  • Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang YS, Dokmeci MR, Khademhosseini A (2014b) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35(26):7308–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Liu G, Li Y, Wang X, Liu S (2015) Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc 137(1):362–368

    Article  CAS  PubMed  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Khang D, Kim SY, Liu-Snyder P, Palmore GT, Durbin SM, Webster TJ (2007) Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 28(32):4756–4768

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Che L, Ha Y, Ryu W (2014) Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C 40:324–335

    Article  CAS  Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1(3):193–212

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994) Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer 70(6):1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavenus S, Trichet V, Le Chevalier S, Hoornaert A, Louarn G, Layrolle P (2012) Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine 7(7):967–980

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Kim BS, Lee H, Im GI (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20(7):1434–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WR, **e XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Lipski AM, Pino CJ, Haselton FR, Chen IW, Shastri VP (2008) The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials 29(28):3836–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Slamovich EB, Webster TJ (2006) Less harmful acidic degradation of poly (lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomedicine 1(4):541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–713

    Article  CAS  PubMed  Google Scholar 

  • Loo YY, Rukayadi Y, Nor-Khaizura MA, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front Microbiol 9:1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu AH, Salabas EE, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  • Madhumathi K, Kumar TS (2014) Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed Mater 9(3):035002

    Article  CAS  PubMed  Google Scholar 

  • Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3(1):36–40

    Article  CAS  PubMed  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5–6):171–185

    Article  CAS  PubMed  Google Scholar 

  • Mironov V, Kasyanov V, Markwald RR (2008) Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 26(6):338–344

    Article  CAS  PubMed  Google Scholar 

  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42(3):1147–1235

    Article  CAS  PubMed  Google Scholar 

  • Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM (2015) Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Thermal Fluid Sci 60:83–95

    Article  CAS  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55(3):403–419

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Manoharan V, Krafft D, Assmann A, Uquillas JA, Shin SR, Hasan A, Hussain MA, Memic A, Gaharwar AK, Khademhosseini A (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4(20):3544–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Zhang K, Li S, Wu J, Pham-Huy C, Diao X, **ao D, He H (2016) Superparamagnetic Fe 3 O 4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J Chem 40(5):4480–4491

    Article  CAS  Google Scholar 

  • Rachel K, Pathak S, Moorthi A, Narasimhan S, Murugesan R, Narayan S (2020) 5-Azacytidine incorporated polycaprolactone-gelatin nanoscaffold as a potential material for cardiomyocyte differentiation. J Biomater Sci Polym Ed 31(1):123–140

    Article  CAS  PubMed  Google Scholar 

  • Radomska A, Leszczyszyn J, Radomski MW (2016) The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv Clin Exp Med 25(1):151–162

    Article  PubMed  Google Scholar 

  • Redhead HM, Davis SS, Illum L (2001) Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 70(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Scholes PD, Coombes AG, Illum L, Davis SS, Watts JF, Ustariz C, Vert M, Davies MC (1999) Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release 9(3):261–278

    Article  Google Scholar 

  • Shanbedi M, Heris SZ, Amiri A, Hosseinipour E, Eshghi H, Kazi SN (2015) Synthesis of aspartic acid-treated multi-walled carbon nanotubes-based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube. Energy Convers Manag 105:1366–1376

    Article  CAS  Google Scholar 

  • Shin D, Banerjee D (2015) Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. Int J Heat Mass Transf 84:898–902

    Article  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S (2019) Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 42(1):84–93

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas S, Sobhan CB (2011) A review of experimental investigations on thermal phenomena in nanofluids. Nanoscale Res Lett 6(1):1–21

    Article  CAS  Google Scholar 

  • Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30(3–4):294–324

    Article  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  • Tseng P, Judy JW, Di Carlo D (2012) Magnetic nanoparticle–mediated massively parallel mechanical modulation of single-cell behavior. Nat Methods 9(11):1113–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma S, Domb AJ, Kumar N (2011) Nanomaterials for regenerative medicine. Nanomedicine (Lond) 6:157–181

    Article  CAS  Google Scholar 

  • Vial S, Nykypanchuk D, Yager KG, Tkachenko AV, Gang O (2013) Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7(6):5437–5445

    Article  CAS  PubMed  Google Scholar 

  • Vieira S, Vial S, Reis RL, Oliveira JM (2017) Nanoparticles for bone tissue engineering. Biotechnol Prog 33(3):590–611

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Castro R, An X, Song C, Luo Y, Shen M, Tomás H, Zhu M, Shi X (2012) Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22(44):23357–23367

    Article  CAS  Google Scholar 

  • Wanjale SD, Jog JP (2006) Crystallization and phase transformation kinetics of poly (1-butene)/MWCNT nanocomposites. Polymer 47(18):6414–6421

    Article  CAS  Google Scholar 

  • Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9(11):923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Wu M, Zhao JX (2014) Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine 10(2):297–312

    Article  CAS  PubMed  Google Scholar 

  • Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886

    Article  CAS  PubMed  Google Scholar 

  • Yan LP, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, Mano JF, Oliveira JM, Oliveira AL, Reis RL (2013) Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine 8(3):359–378

    Article  CAS  PubMed  Google Scholar 

  • Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Wang Y, Wang L, Wang Y, Cai X, Zhang C, Wang LV, **a Y (2013) Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Theranostics 3(8):532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Chettinad Academy of Research and Education (CARE) for providing the financial and infrastructural support to complete this piece of work.

Funding: This work was supported by the departmental grants sanctioned to Dr. Antara Banerjee (PI) from Chettinad Academy of Research and Education (CARE), Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antara Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deka, D., Das, A., Priyadrshini, B., Pathak, S., Banerjee, A. (2022). Nanoparticles for Tissue Engineering: Type, Properties, and Characterization. In: Afaq, S., Malik, A., Tarique, M. (eds) Application of Nanoparticles in Tissue Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-6198-3_1

Download citation

Publish with us

Policies and ethics

Navigation