Producing Value-Added Products from Organic Bioresources via Photo-BioCatalytic Processes

  • Chapter
  • First Online:
Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 11))

  • 674 Accesses

Abstract

The interplay between light and bioprocesses represents an opportunity to develop high-value products from organic waste. In the past decade, the field of green chemistry was overturned by applications of photobiocatalysis, despite being investigated since the early 1900s. New developments allow fine-tuning control and accelerated kinetics of enzymatic redox reactions by light. Indeed, solar irradiation can be deployed either to directly activate or to ensure the in-situ regeneration of reducing equivalent promoting redox enzymes activity. Till now, organic wastes are only partially utilized as biomass growth support in biorefinery processes and its fully exploitation is far to be achieved. Photobiocatalysis exemplifies a strategic way to design new biotransformation processes. In this context, the production of high-value molecules is achieved by using organic waste as primary chemical precursors that provides electrons upon oxidation, also widely defined as sacrificial molecules. In this chapter, the organic wastes recovery though photobiocatalytic processes, including enzymatic systems, electron reservoirs and final acceptors, are discussed. In addition, a special focus will be given toward the light-driven valorisation of organic by-products involving whole-cell biotransformation approaches. These technologies are considered as the new frontiers in the biorefinery field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rapf RJ, Vaida V. Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys Chem Chem Phys. 2016;18:20067–84. https://doi.org/10.1039/C6CP00980H.

    Article  CAS  PubMed  Google Scholar 

  2. Tokode O, Prabhu R, Lawton LA, Robertson PKJ. Controlled periodic illumination in semiconductor photocatalysis. J Photochem Photobiol A Chem. 2016;319–320:96–106. https://doi.org/10.1016/j.jphotochem.2015.12.002.

    Article  CAS  Google Scholar 

  3. Bartlett JS, Ciotti ÁM, Davis RF, Cullen JJ. The spectral effects of clouds on solar irradiance. J Geophys Res Ocean. 1998;103:31017–31. https://doi.org/10.1029/1998JC900002.

    Article  Google Scholar 

  4. Holdmann C, Schmid-Staiger U, Hirth T. Outdoor microalgae cultivation at different biomass concentrations—assessment of different daily and seasonal light scenarios by modeling. Algal Res. 2019;38:101405. https://doi.org/10.1016/j.algal.2018.101405.

    Article  Google Scholar 

  5. Adam D, Bösche L, Castañeda-Losada L, Winkler M, Apfel U-P, Happe T. Sunlight-dependent hydrogen production by photosensitizer/hydrogenase systems. ChemSusChem. 2017;10:894–902. https://doi.org/10.1002/cssc.201601523.

    Article  CAS  PubMed  Google Scholar 

  6. Schmermund L, Reischauer S, Bierbaumer S, Winkler CK, Diaz-Rodriguez A, Edwards LJ, Kara S, Mielke T, Cartwright J, Grogan G, Pieber B, Kroutil W. Chromoselective photocatalysis enables stereocomplementary biocatalytic pathways**. Angew Chemie Int Ed. 2021;60:6965–9. https://doi.org/10.1002/anie.202100164.

    Article  CAS  Google Scholar 

  7. Juris A, Ceroni P, Balzani V Photochemistry and photophysics: concepts, research, applications, 2014.

    Google Scholar 

  8. Li P, Ma Y, Li Y, Zhang X, Wang Y. Cascade synthesis from Cyclohexane to ϵ-caprolactone by visible-light-driven photocatalysis combined with whole-cell biological oxidation. Chembiochem. 2020;21:1852–5. https://doi.org/10.1002/cbic.202000035.

    Article  CAS  PubMed  Google Scholar 

  9. Junge NH, Fernandes DLA, Sá J. Phototriggering lignin peroxidase with nanocatalysts to convert veratryl alcohol to high-value chemical veratryl aldehyde. Mater Today Sustain. 2018;1–2:28–31. https://doi.org/10.1016/j.mtsust.2018.11.001.

    Article  Google Scholar 

  10. Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res. 2009; https://doi.org/10.1021/ar900034t.

  11. Lin VSY, DiMagno SG, Therien MJ. Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems. Science 80. 1994;264:1105–11. https://doi.org/10.1126/science.8178169.

    Article  CAS  Google Scholar 

  12. Cannella D, Möllers KB, Frigaard N-U, Jensen PE, Bjerrum MJ, Johansen KS, Felby C. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun. 2016;7:11134. https://doi.org/10.1038/ncomms11134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dodge N, Russo DA, Blossom BM, Singh RK, van Oort B, Jensen PE. Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase. Biotechnol Biofuels. 2020;13(1):1–12. https://doi.org/10.21203/rs.3.rs-40886/v1.

    Article  Google Scholar 

  14. Bissaro B, Kommedal E, Røhr ÅK, Eijsink VGH. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nat Commun. 2020:11. https://doi.org/10.1038/s41467-020-14744-9.

  15. Lazarides T, Sazanovich IV, Simaan AJ, Kafentzi MC, Delor M, Mekmouche Y, Faure B, Réglier M, Weinstein JA, Coutsolelos AG, Tron T. Visible light-driven O2 reduction by a porphyrin-laccase system. J Am Chem Soc. 2013;135:3095–103. https://doi.org/10.1021/ja309969s.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Shi J, Sun Y, Wu Y, Zhang Y, Cai Z, Chen Y, You C, Han P, Jiang Z. Artificial thylakoid for the coordinated photoenzymatic reduction of carbon dioxide. ACS Catal. 2019;9:3913–25. https://doi.org/10.1021/acscatal.9b00255.

    Article  CAS  Google Scholar 

  17. Ihara M, Nishihara H, Yoon K-S, Lenz O, Friedrich B, Nakamoto H, Kojima K, Honma D, Kamachi T, Okura I. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem Photobiol. 2006;82:676. https://doi.org/10.1562/2006-01-16-RA-778.

    Article  CAS  PubMed  Google Scholar 

  18. Lubner CE, Applegate AM, Knörzer P, Ganago A, Bryant DA, Happe T, Golbeck JH. Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci U S A. 2011;108:20988–91. https://doi.org/10.1073/pnas.1114660108.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee M, Kim JH, Lee SH, Lee SH, Park CB. Biomimetic artificial photosynthesis by light-harvesting synthetic wood. ChemSusChem. 2011;4:581–6. https://doi.org/10.1002/cssc.201100074.

    Article  CAS  PubMed  Google Scholar 

  20. Wlodarczyk A, Gnanasekaran T, Nielsen AZ, Zulu NN, Mellor SB, Luckner M, Thøfner JFB, Olsen CE, Mottawie MS, Burow M, Pribil M, Feussner I, Møller BL, Jensen PE. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metab Eng. 2016;33:1–11. https://doi.org/10.1016/j.ymben.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  21. Böhmer S, Köninger K, Gómez-Baraibar Á, Bojarra S, Mügge C, Schmidt S, Nowaczyk M, Kourist R. Enzymatic oxyfunctionalization driven by photosynthetic water-splitting in the cyanobacterium synechocystis sp. PCC 6803. Catalysts. 2017;7:240. https://doi.org/10.3390/catal7080240.

    Article  CAS  Google Scholar 

  22. Lassen LM, Nielsen AZ, Ziersen B, Gnanasekaran T, Møller BL, Jensen PE. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol. 2014;3:1–12. https://doi.org/10.1021/sb400136f.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SH, Choi DS, Pesic M, Lee YW, Paul CE, Hollmann F, Park CB. Cofactor-free, direct photoactivation of enoate reductases for the asymmetric reduction of C=C bonds. Angew Chem Int Ed. 2017;56:8681–5. https://doi.org/10.1002/anie.201702461.

    Article  CAS  Google Scholar 

  24. Feyza Özgen F, Runda ME, Burek BO, Wied P, Bloh JZ, Kourist R, Schmidt S. Artificial light-harvesting complexes enable rieske oxygenase catalyzed hydroxylations in non-photosynthetic cells. Angew Chem Int Ed. 2020;59:3982–7. https://doi.org/10.1002/anie.201914519.

    Article  CAS  Google Scholar 

  25. Biegasiewicz KF, Cooper SJ, Emmanuel MA, Miller DC, Hyster TK. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases. Nat Chem. 2018;10:770–5. https://doi.org/10.1038/s41557-018-0059-y.

    Article  CAS  PubMed  Google Scholar 

  26. Richardson SN, Nsiama TK, Walker AK, McMullin DR, Miller JD. Antimicrobial dihydrobenzofurans and xanthenes from a foliar endophyte of Pinus strobus. Phytochemistry. 2015;117:436–43. https://doi.org/10.1016/j.phytochem.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  27. Bissaro B, Forsberg Z, Ni Y, Hollmann F, Vaaje-Kolstad G, Eijsink VGH. Fueling biomass-degrading oxidative enzymes by light-driven water oxidation. Green Chem. 2016;18:5357–66. https://doi.org/10.1039/c6gc01666a.

    Article  CAS  Google Scholar 

  28. Mifsud M, Gargiulo S, Iborra S, Arends IWCE, Hollmann F, Corma A. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat Commun. 2014;5:1–6. https://doi.org/10.1038/ncomms4145.

    Article  CAS  Google Scholar 

  29. Yan L, Yang F, Tao CY, Luo X, Zhang L. Highly efficient and stable Cu2O–TiO2 intermediate photocatalytic water splitting. Ceram Int. 2020;46:9455–63. https://doi.org/10.1016/j.ceramint.2019.12.206.

    Article  CAS  Google Scholar 

  30. **ong J, Liang Y, Cheng H, Guo S, Jiao C, Zhu H, Wang S, Liang J, Yang Q, Chen G. Preparation and photocatalytic properties of bagasse-supported nano-TiO2 photocatalytic-coupled microbial carrier. Gongneng Cailiao/J Funct Mater. 2020;51 https://doi.org/10.3969/j.issn.1001-9731.2020.07.003.

  31. Durgalakshmi D, Ajay Rakkesh R, Rajendran S, Naushad M. Green photocatalyst for diverge applications. In: Green photocatalysts for energy and environmental process. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-17638-9_1.

    Chapter  Google Scholar 

  32. Bera D, Qian L, Tseng TK, Holloway PH. Quantum dots and their multimodal applications: a review. Materials. 2010;3:2260–345. https://doi.org/10.3390/ma3042260.

    Article  CAS  PubMed Central  Google Scholar 

  33. Das GS, Shim JP, Bhatnagar A, Tripathi KM, Kim TY. Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(III) and ascorbic acid. Sci Rep. 2019;9:1–9. https://doi.org/10.1038/s41598-019-49266-y.

    Article  CAS  Google Scholar 

  34. Yao X, Ma C, Huang H, Zhu Z, Dong H, Li C, Zhang W, Yan Y, Liu Y. Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity. Nano. 2018;13(03):1850031. https://doi.org/10.1142/S1793292018500315.

    Article  CAS  Google Scholar 

  35. Tang X, Yu Y, Ma C, Zhou G, Liu X, Song M, Lu Z, Liu L. The fabrication of a biomass carbon quantum dot-Bi2WO6 hybrid photocatalyst with high performance for antibiotic degradation. New J Chem. 2019;43:18860–7. https://doi.org/10.1039/c9nj04764f.

    Article  CAS  Google Scholar 

  36. Bhattacharya D, Mishra MK, De G. Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films. J Phys Chem C. 2017;121:28106–16. https://doi.org/10.1021/acs.jpcc.7b08039.

    Article  CAS  Google Scholar 

  37. Younus H. Oxidoreductases: overview and practical applications. In: Biocatalysis: enzymatic basics and applications. Springer International Publishing; 2019. p. 39–55. https://doi.org/10.1007/978-3-030-25023-2_3.

    Chapter  Google Scholar 

  38. Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW. Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J Biotechnol. 2010;146:9–24. https://doi.org/10.1016/j.jbiotec.2010.01.021.

    Article  CAS  PubMed  Google Scholar 

  39. Sakkos JK, Wackett LP, Aksan A. Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-019-40113-8.

    Article  CAS  Google Scholar 

  40. Vaaje-kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 80. 2010;330:219–23. https://doi.org/10.1126/science.1192231.

    Article  CAS  Google Scholar 

  41. Lo Leggio L, Simmons TJ, Poulsen JCN, Frandsen KEH, Hemsworth GR, Stringer MA, Von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6:1–9. https://doi.org/10.1038/ncomms6961.

    Article  CAS  Google Scholar 

  42. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6:1–14. https://doi.org/10.1186/1754-6834-6-41.

    Article  CAS  Google Scholar 

  43. Franco Cairo JPL, Cannella D, Oliveira LC, Gonçalves TA, Rubio MV, Terrasan CRF, Tramontina R, Mofatto LS, Carazzolle MF, Garcia W, Felby C, Damasio A, Walton PH, Squina F. On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. J Inorg Biochem. 2021;216:111316. https://doi.org/10.1016/j.**orgbio.2020.111316.

    Article  CAS  PubMed  Google Scholar 

  44. Quinlan RJ, Sweeney MD, Lo L, Otten H, Poulsen JN, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. PNAS. 2011;108:15079–84. https://doi.org/10.1073/pnas.1105776108.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ciano L, Davies GJ, Tolman WB, Walton PH. Bracing copper for the catalytic oxidation of C–H bonds. Nat Catal. 2018;1:571–7. https://doi.org/10.1038/s41929-018-0110-9.

    Article  CAS  Google Scholar 

  46. Beeson WT, Phillips CM, Cate JHD, Marletta MA. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc. 2012;134:890–2. https://doi.org/10.1021/ja210657t.

    Article  CAS  PubMed  Google Scholar 

  47. Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijsink VGH. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat Chem Biol. 2017;13:1123–8. https://doi.org/10.1038/nchembio.2470.

    Article  CAS  PubMed  Google Scholar 

  48. Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014;111:8797–802. https://doi.org/10.1073/pnas.1408115111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci U S A. 2014;111:149–54. https://doi.org/10.1073/pnas.1316609111.

    Article  CAS  PubMed  Google Scholar 

  50. Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VGH. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc Natl Acad Sci U S A. 2014;111:8446–51. https://doi.org/10.1073/pnas.1402771111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martínez AT. How to break down crystalline cellulose. Science (80). 2016;352:1050–1. https://doi.org/10.1126/science.aaf8920.

    Article  Google Scholar 

  52. Westereng B, Cannella D, Wittrup Agger J, Jørgensen H, Larsen Andersen M, Eijsink VGH, Felby C. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep. 2015;5:1–9. https://doi.org/10.1038/srep18561.

    Article  CAS  Google Scholar 

  53. Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Distinct substrate specificities and electron-donating systems of fungal lytic polysaccharide monooxygenases. Front Microbiol. 2018;9:1–22. https://doi.org/10.3389/fmicb.2018.01080.

    Article  Google Scholar 

  54. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun. 2015;6:1–11. https://doi.org/10.1038/ncomms8542.

    Article  CAS  Google Scholar 

  55. Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VGH, Ludwig R. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science (80). 2016;352:1098–101. https://doi.org/10.1126/science.aaf3165.

    Article  CAS  Google Scholar 

  56. Blossom BM, Russo DA, Singh RK, van Oort B, Keller MB, Simonsen TI, Perzon A, Gamon LF, Davies MJ, Cannella D, Croce R, Jensen PE, Bjerrum MJ, Felby C. Photobiocatalysis by a lytic polysaccharide monooxygenase using intermittent illumination. ACS Sustain Chem Eng. 2020;8:9301–10. https://doi.org/10.1021/acssuschemeng.0c00702.

    Article  CAS  Google Scholar 

  57. Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase properties, physiological functions, and evolution. Int J Mol Sci. 2020;21:966. https://doi.org/10.3390/ijms21030966.

    Article  CAS  PubMed Central  Google Scholar 

  58. Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. Can laccases catalyze bond cleavage in lignin? Biotechnol Adv. 2015;33:13–24. https://doi.org/10.1016/j.biotechadv.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  59. Simaan AJ, Mekmouche Y, Herrero C, Moreno P, Aukauloo A, Delaire JA, Réglier M, Tron T. Photoinduced multielectron transfer to a multicopper oxidase resulting in dioxygen reduction into water. Chem A Eur J. 2011;17:11743–6. https://doi.org/10.1002/chem.201101282.

    Article  CAS  Google Scholar 

  60. Schneider L, Mekmouche Y, Rousselot-Pailley P, Simaan AJ, Robert V, Réglier M, Aukauloo A, Tron T. Visible-light-driven oxidation of organic substrates with dioxygen mediated by a [Ru(bpy)3]2+/laccase system. ChemSusChem. 2015;8:3048–51. https://doi.org/10.1002/cssc.201500602.

    Article  CAS  PubMed  Google Scholar 

  61. Li H, Guo S, Li C, Huang H, Liu Y, Kang Z. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light. ACS Appl Mater Interfaces. 2015;7:10004–12. https://doi.org/10.1021/acsami.5b02386.

    Article  CAS  PubMed  Google Scholar 

  62. Brenelli L, Squina FM, Felby C, Cannella D. Laccase-derived lignin compounds boost cellulose oxidative enzymes AA9. Biotechnol Biofuels. 2018;11:1–12. https://doi.org/10.1186/s13068-017-0985-8.

    Article  CAS  Google Scholar 

  63. Perna V, Meyer AS, Holck J, Eltis LD, Eijsink VGH, Wittrup Agger J. Laccase-catalyzed oxidation of lignin induces production of H2O2. ACS Sustain Chem Eng. 2020;8:831–41. https://doi.org/10.1021/acssuschemeng.9b04912.

    Article  CAS  Google Scholar 

  64. Hilgers R, Vincken JP, Gruppen H, Kabel MA. Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng. 2018;6:2037–46. https://doi.org/10.1021/acssuschemeng.7b03451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Faiza M, Huang S, Lan D, Wang Y. New insights on unspecific peroxygenases: superfamily reclassification and evolution. BMC Evol Biol. 2019;19:76. https://doi.org/10.1186/s12862-019-1394-3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hofrichter M, Ullrich R. Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol. 2014;19:116–25. https://doi.org/10.1016/j.cbpa.2014.01.015.

    Article  CAS  PubMed  Google Scholar 

  67. Avasthi K, Bohre A, Grilc M, Likozar B, Saha B. Advances in catalytic production processes of biomass-derived vinyl monomers. Cat Sci Technol. 2020;10:5411–37. https://doi.org/10.1039/d0cy00598c.

    Article  CAS  Google Scholar 

  68. Luo Z, Qin S, Chen S, Hui Y, Zhaoa C. Selective conversion of lignin to ethylbenzene. Green Chem. 2020;22(6):1842–50. https://doi.org/10.1039/x0xx00000x.

    Article  Google Scholar 

  69. Wang A, Song H. Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation. Bioresour Technol. 2018;268:505–13. https://doi.org/10.1016/j.biortech.2018.08.026.

    Article  CAS  PubMed  Google Scholar 

  70. Yuan B, Mahor D, Fei Q, Wever R, Alcalde M, Zhang W, Hollmann F (2020) Water-soluble anthraquinone photocatalysts enable methanol-driven enzymatic halogenation and hydroxylation reactions. ACS Catal 10(15):8277–8284 doi: https://doi.org/10.1021/acscatal.0c01958.

  71. Hobisch M, Schie MMCH, Kim J, Røjkjær Andersen K, Alcalde M, Kourist R, Park CB, Hollmann F, Kara S. Solvent-free photobiocatalytic hydroxylation of cyclohexane. ChemCatChem. 2020;12:4009–13. https://doi.org/10.1002/cctc.202000512.

    Article  CAS  Google Scholar 

  72. Klinman JP. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem. 2006;281:3013–6. https://doi.org/10.1074/jbc.R500011200.

    Article  CAS  PubMed  Google Scholar 

  73. Van Den Heuvel RHH, Tahallah N, Kamerbeek NM, Fraaije MW, Van Berkel WJH, Janssen DB, Heck AJR. Coenzyme binding during catalysis is beneficial for the stability of 4-hydroxyacetophenone monooxygenase. J Biol Chem. 2005;280:32115–21. https://doi.org/10.1074/jbc.M503758200.

    Article  CAS  PubMed  Google Scholar 

  74. Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer-Villiger monooxygenases: tunable oxidative biocatalysts. ACS Catal. 2019;9:11207–41. https://doi.org/10.1021/acscatal.9b03396.

    Article  CAS  Google Scholar 

  75. Bong YK, Song S, Nazor J, Vogel M, Widegren M, Smith D, Collier SJ, Wilson R, Palanivel SM, Narayanaswamy K, Mijts B, Clay MD, Fong R, Colbeck J, Appaswami A, Muley S, Zhu J, Zhang X, Liang J, Entwistle D. Baeyer-Villiger monooxygenase-mediated synthesis of esomeprazole as an alternative for Kagan sulfoxidation. J Org Chem. 2018;83:7453–8. https://doi.org/10.1021/acs.joc.8b00468.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang W, Fueyo EF, Hollmann F, Martin LL, Pesic M, Wardenga R, Höhne M, Schmidt S. Combining photo-organo redox- and enzyme catalysis facilitates asymmetric C–H bond functionalization. Eur J Org Chem. 2019;2019:80–4. https://doi.org/10.1002/ejoc.201801692.

    Article  CAS  Google Scholar 

  77. Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S, Billon E, Richaud P, Brugière S, Couté Y, Nurizzo D, Müller P, Brettel K, Pignol D, Arnoux P, Li-Beisson Y, Peltier G, Beisson F. An algal photoenzyme converts fatty acids to hydrocarbons. Science (80). 2017;357:903–7. https://doi.org/10.1126/science.aan6349.

    Article  CAS  Google Scholar 

  78. Huijbers MME, Zhang W, Tonin F, Hollmann F. Light-driven enzymatic decarboxylation of fatty acids. Angew Chem Int Ed. 2018;57:13648–51. https://doi.org/10.1002/anie.201807119.

    Article  CAS  Google Scholar 

  79. Karava M, Gockel P, Kabisch J. Bacillus subtilis spore surface display of photodecarboxylase for the transformation of lipids to hydrocarbons. Sustain Energy Fuels. 2021; https://doi.org/10.1039/d0se01404d.

  80. Toogood HS, Gardiner JM, Scrutton NS. Biocatalytic reductions and chemical versatility of the old yellow enzyme family of flavoprotein oxidoreductases. ChemCatChem. 2010;2:892–914. https://doi.org/10.1002/cctc.201000094.

    Article  CAS  Google Scholar 

  81. Köninger K, Gómez Baraibar Á, Mügge C, Paul CE, Hollmann F, Nowaczyk MM, Kourist R. Recombinant cyanobacteria for the asymmetric reduction of C=C bonds fueled by the biocatalytic oxidation of water. Angew Chem Int Ed. 2016;55:5582–5. https://doi.org/10.1002/anie.201601200.

    Article  CAS  Google Scholar 

  82. Wang Y, Huang X, Hui J, Vo LT, Zhao H. Stereoconvergent reduction of activated alkenes by a nicotinamide free synergistic photobiocatalytic system. ACS Catal. 2020;10:9431–7. https://doi.org/10.1021/acscatal.0c02489.

    Article  CAS  Google Scholar 

  83. Lin R, Deng C, Zhang W, Hollmann F, Murphy JD. Production of Bio-alkanes from Biomass and CO2. Trends Biotechnol. 2021; https://doi.org/10.1016/j.tibtech.2020.12.004.

  84. Schievano A, Pepé Sciarria T, Vanbroekhoven K, De Wever H, Puig S, Andersen SJ, Rabaey K, Pant D. Electro-fermentation— merging electrochemistry with fermentation in industrial applications. Trends Biotechnol. 2016;34:866–78. https://doi.org/10.1016/j.tibtech.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  85. Shanthi Sravan J, Butti SK, Sarkar O, Vamshi Krishna K, Venkata Mohan S. Electrofermentation of food waste—regulating acidogenesis towards enhanced volatile fatty acids production. Chem Eng J. 2018;334:1709–18. https://doi.org/10.1016/j.cej.2017.11.005.

    Article  CAS  Google Scholar 

  86. Vassilev I, Hernandez PA, Batlle-Vilanova P, Freguia S, Krömer JO, Keller J, Ledezma P, Virdis B. Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustain Chem Eng. 2018;6:8485–93. https://doi.org/10.1021/acssuschemeng.8b00739.

    Article  CAS  Google Scholar 

  87. Zhang W, Ma M, Huijbers MME, Filonenko GA, Pidko EA, Van Schie M, De Boer S, Bastien, Burek O, Bloh JZ, WJH VB, Smith WA, Hollmann F. Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids. J Am Chem Soc. 2019; https://doi.org/10.1021/jacs.8b12282.

  88. Marsolek MD, Torres CI, Hausner M, Rittmann BE. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnol Bioeng. 2008;101:83–92. https://doi.org/10.1002/bit.21889.

    Article  CAS  PubMed  Google Scholar 

  89. Zhou D, Xu Z, Dong S, Huo M, Dong S, Tian X, Cui B, **ong H, Li T, Ma D. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light. Environ Sci Technol. 2015;49:7776–83. https://doi.org/10.1021/acs.est.5b00989.

    Article  CAS  PubMed  Google Scholar 

  90. Kanagasabi S, Kang YL, Manickam M, Ibrahim S, Pichiah S. Intimate coupling of electro and biooxidation of tannery wastewater. Desalin Water Treat. 2013;51:6617–23. https://doi.org/10.1080/19443994.2013.769699.

    Article  CAS  Google Scholar 

  91. **ong J, Guo S, Zhao T, Liang Y, Liang J, Wang S, Zhu H, Zhang L, Zhao JR, Chen G. Degradation of methylene blue by intimate coupling photocatalysis and biodegradation with bagasse cellulose composite carrier. Cellulose. 2020;27:3391–404. https://doi.org/10.1007/s10570-020-02995-0.

    Article  CAS  Google Scholar 

  92. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S. Extraction and characterization of lignin from different biomass resources. J Mater Res Technol. 2015;4:26–32. https://doi.org/10.1016/j.jmrt.2014.10.009.

    Article  CAS  Google Scholar 

  93. Erickson M, Larsson S, Miksche GE. Gas-chromatographic analisys of lignin oxidation products. Structure of the spruce lignins. Acta Chem Scand. 1973;27 https://doi.org/10.3891/acta.chem.scand.27-0005.

  94. Kanitskaya LV, Rokhin AV, Kushnarev DF, Kalabin GA. Chemical structure of wheat dioxane lignin studied by 1H and 13C NMR spectroscopy. Polym Sci Ser A. 1998;40(5):459–63.

    Google Scholar 

  95. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol. 2006;125:198–209. https://doi.org/10.1016/j.jbiotec.2006.02.021.

    Article  CAS  PubMed  Google Scholar 

  96. Kumar L, Arantes V, Chandra R, Saddler J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol. 2012;103:201–8. https://doi.org/10.1016/j.biortech.2011.09.091.

    Article  CAS  PubMed  Google Scholar 

  97. Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SWA, Vincken JP, Van Berkel WJH, Kabel MA, Gruppen H. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels. 2016;9:1–17. https://doi.org/10.1186/s13068-016-0594-y.

    Article  CAS  Google Scholar 

  98. Karnaouri A, Matsakas L, Krikigianni E, Rova U, Christakopoulos P. Valorization of waste forest biomass toward the production of cello-oligosaccharides with potential prebiotic activity by utilizing customized enzyme cocktails. Biotechnol Biofuels. 2019;12:1–19. https://doi.org/10.1186/s13068-019-1628-z.

    Article  CAS  Google Scholar 

  99. Cannella D, Hsieh CWC, Felby C, Jørgensen H. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels. 2012;5:1–10. https://doi.org/10.1186/1754-6834-5-26.

    Article  CAS  Google Scholar 

  100. Rodríguez-Zúñiga UF, Cannella D, Giordano RDC, Giordano RDLC, Jørgensen H, Felby C. Lignocellulose pretreatment technologies affect the level of enzymatic cellulose oxidation by LPMO. Green Chem. 2015;17:2896–903. https://doi.org/10.1039/c4gc02179g.

    Article  Google Scholar 

  101. Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed. 2018;57:7958–85. https://doi.org/10.1002/anie.201710070.

    Article  CAS  Google Scholar 

  102. Karmee SK, Linardi D, Lee J, Lin CSK. Conversion of lipid from food waste to biodiesel. Waste Manag. 2015;41:169–73. https://doi.org/10.1016/j.wasman.2015.03.025.

    Article  CAS  PubMed  Google Scholar 

  103. Włodarczyk A, Selão TT, Norling B, Nixon PJ. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun Biol. 2020;3:1–14. https://doi.org/10.1038/s42003-020-0910-8.

    Article  CAS  Google Scholar 

  104. Ferreira GF, Ríos Pinto LF, Maciel Filho R, Fregolente LV. A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renew Sust Energ Rev. 2019;109:448–66. https://doi.org/10.1016/j.rser.2019.04.052.

    Article  CAS  Google Scholar 

  105. Sun H, Ren Y, Mao X, Li X, Zhang H, Lao Y, Chen F. Harnessing C/N balance of Chromochloris zofingiensis to overcome the potential conflict in microalgal production. Commun Biol. 2020;3:1–13. https://doi.org/10.1038/s42003-020-0900-x.

    Article  CAS  Google Scholar 

  106. López G, Yate C, Ramos FA, Cala MP, Restrepo S, Baena S. Production of polyunsaturated fatty acids and lipids from autotrophic, mixotrophic and heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci Rep. 2019;9:1–13. https://doi.org/10.1038/s41598-019-46645-3.

    Article  CAS  Google Scholar 

  107. Wessendorf RL. Introducing an Arabidopsis thaliana thylakoid thiol/disulfide-modulating protein into synechocystis increases the efficiency of photosystem II photochemistry. Front Plant Sci. 2019;10:1284. https://doi.org/10.3389/fpls.2019.01284.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy. 2008;33:1646–53. https://doi.org/10.1016/j.energy.2008.06.002.

    Article  CAS  Google Scholar 

  109. Wen Z, Yu X, Tu S-T, Yan J, Dahlquist E. Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresour Technol. 2010;101:9570–6. https://doi.org/10.1016/j.biortech.2010.07.066.

    Article  CAS  PubMed  Google Scholar 

  110. Mulinacci N, Romani A, Galardi C, Pinelli P, Giaccherini C, Vincieri FF. Polyphenolic content in olive oil waste waters and related olive samples. J Agric Food Chem. 2001;49:3509–14. https://doi.org/10.1021/jf000972q.

    Article  CAS  PubMed  Google Scholar 

  111. Ahmed PM, Fernández PM, de Figueroa LIC, Pajot HF. Exploitation alternatives of olive mill wastewater: production of value-added compounds useful for industry and agriculture. Biofuel Res J. 2019;6:980–94. https://doi.org/10.18331/BRJ2019.6.2.4.

    Article  CAS  Google Scholar 

  112. Zhang C, Hong K. Production of terpenoids by synthetic biology approaches. Front Bioeng Biotechnol. 2020;8:347. https://doi.org/10.3389/fbioe.2020.00347.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Straathof AJJ. Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev. 2014;114:1871–908. https://doi.org/10.1021/cr400309c.

    Article  CAS  PubMed  Google Scholar 

  114. Fischer-Romero C, Tindall BJ, Jüttner F. Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int J Syst Bacteriol. 1996;46:183–8. https://doi.org/10.1099/00207713-46-1-183.

    Article  CAS  PubMed  Google Scholar 

  115. Chen J, Henderson G, Grimm CC, Lloyd SW, Laine RA. Termites fumigate their nests with naphthalene. Nature. 1998;392:558–9. https://doi.org/10.1038/33305.

    Article  CAS  Google Scholar 

  116. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. In: Food, pharmaceutical and bioengineering division—core programming topic at the 2011 AIChE annual meeting. AIChE, pp 340–350. doi: https://doi.org/10.1016/j.ymben.2011.06.005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cannella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magri, S., Cannella, D. (2022). Producing Value-Added Products from Organic Bioresources via Photo-BioCatalytic Processes. In: Fang, Z., Smith Jr., R.L., Xu, L. (eds) Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste. Biofuels and Biorefineries, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-16-6162-4_8

Download citation

Publish with us

Policies and ethics

Navigation