Application of Nanomaterials to Separation of Glycosylated Proteins

  • Chapter
  • First Online:
Applications of Nanomaterials in Proteomics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Glycosylation as another significant protein post-translational modification occupies over half of the total proteins in a living organism. Studies have unraveled glycosylation participates in the regulation of numerous biological functions, and its abnormality is closely related to a prodigious number of diseases. Glycosylated proteomics encounters the same challenge during mass spectrometry (MS) analysis including the low abundance and poor ionization efficiency, compared to phosphorylated proteomics. Moreover, similar to phosphorylated proteomics, the characteristic groups (cis diol) of glycoproteome that can be easily recognized promote the design and application of nanomaterials. This chapter gives detailed description on the preparation and application of hydrophilic nanomaterials, boronate affinity nanomaterials and hydrazide–based nanomaterials in separation of glycosylated proteins prior to MS detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, F., Glinskii, O. V., & Glinsky, V. V. (2013). Glycobioinformatics: Current strategies and tools for data mining in Ms-based glycoproteomics. Proteomics, 13, 341–354.

    Article  CAS  PubMed  Google Scholar 

  2. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31, 603–632.

    Article  CAS  Google Scholar 

  3. Francis Suh, J. K., & Matthew, H. W. T. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials, 21, 2589–2598.

    Google Scholar 

  4. Wada, Y., Tajiri, M., & Yoshida, S. (2004). Hydrophilic affinity isolation and maldi multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Analytical Chemistry, 76, 6560–6565.

    Article  CAS  PubMed  Google Scholar 

  5. Huang, H., **, Y., Xue, M., Yu, L., Fu, Q., Ke, Y., Chu, C., & Liang, X. (2009). A novel click chitooligosaccharide for hydrophilic interaction liquid chromatography. Chemical Communications, 6973–6975.

    Google Scholar 

  6. Bodnar, E. D., & Perreault, H. (2015). Synthesis and evaluation of carboxymethyl chitosan for glycopeptide enrichment. Analytica Chimica Acta, 891, 179–189.

    Article  CAS  PubMed  Google Scholar 

  7. Fang, C., **ong, Z., Qin, H., Huang, G., Liu, J., Ye, M., Feng, S., & Zou, H. (2014). One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides. Analytica Chimica Acta, 841, 99–105.

    Article  CAS  PubMed  Google Scholar 

  8. **ong, Z., Qin, H., Wan, H., Huang, G., Zhang, Z., Dong, J., Zhang, L., Zhang, W., & Zou, H. (2013). Layer-by-layer assembly of multilayer polysaccharide coated magnetic nanoparticles for the selective enrichment of glycopeptides. Chemical Communications, 49, 9284–9286.

    Article  CAS  PubMed  Google Scholar 

  9. Guo, Z., Lei, A., Zhang, Y., Xu, Q., Xue, X., Zhang, F., & Liang, X. (2007). Click saccharides: Novel separation materials for hydrophilic interaction liquid chromatography. Chemical Communications, 2491–2493.

    Google Scholar 

  10. Sun, X., Dong, J., Li, J., Ye, M., Zhang, W., & Ou, J. (2017). Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides. Journal of Chromatography A, 1498, 72–79.

    Article  CAS  PubMed  Google Scholar 

  11. He, X.-M., Liang, X.-C., Chen, X., Yuan, B.-F., Zhou, P., Zhang, L.-N., & Feng, Y.-Q. (2017). High strength and hydrophilic chitosan microspheres for the selective enrichment of N-glycopeptides. Analytical Chemistry, 89, 9712–9721.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, G., Liu, J., Wang, X., **e, Z., & Deng, N. (2009). Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Journal of Hazardous Materials, 168, 1053–1058.'

    Google Scholar 

  13. Wang, G., Liu, J., Wang, X., **e, Z., & Deng, N. (2009). Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Journal of Hazardous Materials, 168, 1053–1058.

    Google Scholar 

  14. Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., & Çelik, A. (2012). Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution. Chemical Engineering Journal, 197, 379–386.

    Article  CAS  Google Scholar 

  15. Baroni, P., Vieira, R. S., Meneghetti, E., da Silva, M. G. C., & Beppu, M. M. (2008). Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. Journal of Hazardous Materials, 152, 1155–1163.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz, D., & Gygi, S. P. (2005). An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nature Biotechnology, 23, 1391–1398.

    Article  CAS  PubMed  Google Scholar 

  17. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). Weblogo: A sequence logo generator. Genome Research, 14, 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, L., Ma, S., Chen, Y., Wang, Y., Ou, J., Uyama, H., & Ye, M. (2019). Facile fabrication of biomimetic chitosan membrane with honeycomb-like structure for enrichment of glycosylated peptides. Analytical Chemistry, 91, 2985–2993.

    Article  CAS  PubMed  Google Scholar 

  19. Yu, Z.-L., Yang, N., Zhou, L.-C., Ma, Z.-Y., Zhu, Y.-B., Lu, Y.-Y., Qin, B., **ng, W.-Y., Ma, T., Li, S.-C., Gao, H.-L., Wu, H.-A., & Yu, S.-H. (2018). Bioinspired polymeric woods. Science Advances, 4, eaat7223.

    Google Scholar 

  20. Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., Mao, S., & Han, X. (2016). Cloning nacre’s 3d interlocking skeleton in engineering composites to achieve exceptional mechanical properties. Advanced Materials, 28, 5099–5105.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, X., Shen, G., Wang, C., Li, Y., Dunphy, D., Hasan, T., Brinker, C. J., & Su, B.-L. (2017). Bio-inspired Murray materials for mass transfer and activity. Nature Communications, 8, 14921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, K., Zhao, B., Yu, Q., Xu, J., Li, X., Wei, D., Qian, L., Liu, G., & Wang, W. (2020). Porous graphene oxide/chitosan beads with honeycomb-biomimetic microchannels as hydrophilic adsorbent for the selective capture of glycopeptides. Microchimica Acta, 187, 324.

    Google Scholar 

  23. **ong, Z., Zhao, L., Wang, F., Zhu, J., Qin, H., Wu, R., Zhang, W., & Zou, H. (2012). Synthesis of branched peg brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Chemical Communications, 48, 8138–8140.

    Article  CAS  PubMed  Google Scholar 

  24. Bi, C., Zhao, Y., Shen, L., Zhang, K., He, X., Chen, L., & Zhang, Y. (2015). Click Synthesis of hydrophilic maltose-functionalized iron oxide magnetic nanoparticles based on dopamine anchors for highly selective enrichment of glycopeptides. ACS Applied Materials & Interfaces, 7, 24670–24678.

    Article  CAS  Google Scholar 

  25. Mazur, M., Barras, A., Kuncser, V., Galatanu, A., Zaitzev, V., Turcheniuk, K. V., Woisel, P., Lyskawa, J., Laure, W., Siriwardena, A., Boukherroub, R., & Szunerits, S. (2013). Iron oxide magnetic nanoparticles with versatile surface functions based on dopamine anchors. Nanoscale, 5, 2692–2702.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W., Ji, X., Na, H. B., Safi, M., Smith, A., Palui, G., Perez, J. M., & Mattoussi, H. (2014). Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems. Langmuir, 30, 6197–6208.

    Article  CAS  PubMed  Google Scholar 

  27. Ma, W., Xu, L., Li, Z., Sun, Y., Bai, Y., & Liu, H. (2016). Post-synthetic modification of an amino-functionalized metal-organic framework for highly efficient enrichment of N-linked glycopeptides. Nanoscale, 8, 10908–10912.

    Article  CAS  PubMed  Google Scholar 

  28. Wan, H., Huang, J., Liu, Z., Li, J., Zhang, W., & Zou, H. (2015). A dendrimer-assisted magnetic graphene-silica hydrophilic composite for efficient and selective enrichment of glycopeptides from the complex sample. Chemical Communications, 51, 9391–9394.

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y., Wang, J., Sun, N., & Deng, C.-H. (2017). Glucose-6-phosphate-functionalized magnetic microsphere as novel hydrophilic probe for specific capture of N-linked glycopeptides. Analytical Chemistry, 89, 11151–11158.

    Article  CAS  PubMed  Google Scholar 

  30. Feng, X., Deng, C., Gao, M., Yan, G., & Zhang, X. (2018). Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides. Talanta, 179, 377–385.

    Article  CAS  PubMed  Google Scholar 

  31. Varki, A. (2007). Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 446, 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  32. Schauer, R. (2009). Sialic acids as regulators of molecular and cellular interactions. Current Opinion in Structural Biology, 19, 507–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lorenz, B., Alvarez de Cienfuegos, L., Oelkers, M., Kriemen, E., Brand, C., Stephan, M., Sunnick, E., Yueksel, D., Kalsani, V., Kumar, K., Werz, D. B., & Janshoff, A. (2012). Model system for cell adhesion mediated by weak carbohydrate-carbohydrate interactions. Journal of the American Chemical Society, 134, 3326–3329.

    Google Scholar 

  34. Ding, L., Cheng, W., Wang, X., Ding, S., & Ju, H. (2008). Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. Journal of the American Chemical Society, 130, 7224.

    Google Scholar 

  35. Bucior, I., Scheuring, S., Engel, A., & Burger, M. M. (2004). Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. Journal of Cell Biology, 165, 529–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bucior, I., & Burger, M. M. (2004). Carbohydrate-carbohydrate interactions in cell recognition. Current Opinion in Structural Biology, 14, 631–637.

    Article  CAS  PubMed  Google Scholar 

  37. Cummings, R. D., & Pierce, J. M. (2014). The challenge and promise of glycomics. Chemistry & Biology, 21, 1–15.

    Article  CAS  Google Scholar 

  38. Geyer, A., Gege, C., & Schmidt, R. R. (2000). Calcium-dependent carbohydrate-carbohydrate recognition between Lewis(X) blood group antigens. Angewandte Chemie International Edition, 39, 3246.

    Google Scholar 

  39. Davis, A. P., & Wareham, R. S. (1999). Carbohydrate recognition through noncovalent interactions: A challenge for biomimetic and supramolecular chemistry. Angewandte Chemie International Edition, 38, 2978–2996.

    Article  CAS  PubMed  Google Scholar 

  40. **ong, Y., Li, M., Wang, H., Qing, G., & Sun, T. (2018). Sialic acid-triggered macroscopic properties switching on a smart polymer surface. Applied Surface Science, 427, 1152–1164.

    Article  CAS  Google Scholar 

  41. Li, X., **ong, Y., Qing, G., Jiang, G., Li, X., Sun, T., & Liang, X. (2016). Bioinspired saccharide-saccharide interaction and smart polymer for specific enrichment of sialylated glycopeptides. ACS Applied Materials & Interfaces, 8, 13294–13302.

    Article  CAS  Google Scholar 

  42. Melnikov, S. M., Hoeltzel, A., Seidel-Morgenstern, A., & Tallarek, U. (2012). A molecular dynamics study on the partitioning mechanism in hydrophilic interaction chromatography. Angewandte Chemie International Edition, 51, 6251–6254.

    Article  CAS  PubMed  Google Scholar 

  43. David, C., Hervé, F., Sébille, B., Canva, M., & Millot, M. C. (2006). The reversible binding of immunoglobulins G modified with adamantyl-end-capped poly(ethylene glycol)s to poly-β-cyclodextrin-coated gold surfaces and their Interactions with specific target molecules: A surface plasmon resonance investigation. Sensors and Actuators B-Chemical, 114, 869–880.

    Article  CAS  Google Scholar 

  44. Zheng, H.-J., Ma, J.-T., Feng, W., & Jia, Q. (2017). Specific enrichment of glycoproteins with polymer monolith functionalized with glycocluster grafted beta-cyclodextrin. Journal of Chromatography A, 1512, 88–97.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, H., Zhu, T., Li, X., Ma, J., & Jia, Q. (2017). Peanut agglutinin and beta-cyclodextrin functionalized polymer monolith: Microextraction of IgG galactosylation coupled with online MS detection. Analytica Chimica Acta, 983, 141–148.

    Article  CAS  PubMed  Google Scholar 

  46. Alvarez-Manilla, G., Atwood, J., Guo, Y., Warren, N. L., Orlando, R., & Pierce, M. (2006). Tools for glycoproteomic analysis: Size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. Journal of Proteome Research, 5, 701–708.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, M.-Q., Zeng, W.-F., Fang, P., Cao, W.-Q., Liu, C., Yan, G.-Q., Zhang, Y., Peng, C., Wu, J.-Q., Zhang, X.-J., Tu, H.-J., Chi, H., Sun, R.-X., Cao, Y., Dong, M.-Q., Jiang, B.-Y., Huang, J.-M., Shen, H.-L., Wong, C. C. L. et al. (2017). Pglyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nature Communications, 8, 438.

    Google Scholar 

  48. Kachuk, C., Faulkner, M., Liu, F., & Doucette, A. A. (2016). Automated Sds depletion for mass spectrometry of intact membrane proteins though transmembrane electrophoresis. Journal of Proteome Research, 15, 2634–2642.

    Article  CAS  PubMed  Google Scholar 

  49. Andersen, K. K., Oliveira, C. L., Larsen, K. L., Poulsen, F. M., Callisen, T. H., Westh, P., Pedersen, J. S., & Otzen, D. (2009). The role of decorated Sds micelles in sub-Cmc protein denaturation and association. Journal of Molecular Biology, 391, 207–226.

    Article  CAS  PubMed  Google Scholar 

  50. Wiśniewski, J. R., Duś, K., & Mann, M. (2013). Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10,000 proteins. Proteomics Clinical Applications, 7, 225–233.

    Article  PubMed  CAS  Google Scholar 

  51. Zhao, T., Zhang, C., Ma, W., **ong, Y., Yao, J., Yan, G., Chen, G., & Lu, H. (2019). A practical approach to enrich intact tryptic N-glycopeptides through size exclusion chromatography and hydrophilicity (selic) using an acrylamide-agarose composite gel system. Analytica Chimica Acta, 1058, 107–116.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang, B., Wu, Q., Deng, N., Chen, Y., Zhang, L., Liang, Z., & Zhang, Y. (2016). Hydrophilic GO/Fe3O4/Au/PEG nanocomposites for highly selective enrichment of glycopeptides. Nanoscale, 8, 4894–4897.

    Google Scholar 

  53. Wang, J., Yao, J., Sun, N., & Deng, C. (2017). Facile synthesis of thiol-polyethylene glycol functionalized magnetic Titania nanomaterials for highly efficient enrichment of N-linked glycopeptides. Journal of Chromatography A, 1512, 1–8.

    Article  CAS  PubMed  Google Scholar 

  54. Cano, M., Núñez-Lozano, R., Lumbreras, R., González-Rodríguez, V., Delgado-García, A., Jiménez-Hoyuela, J. M., & de la Cueva-Méndez, G. (2017). Partial pegylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale, 9, 812–822.

    Article  CAS  PubMed  Google Scholar 

  55. Guo, P.-F., Zhang, D.-D., Guo, Z.-Y., Wang, X.-M., Wang, M.-M., Chen, M.-L., & Wang, J.-H. (2018). Pegylated titanate nanosheets: Hydrophilic monolayers with a superior capacity for the selective isolation of immunoglobulin G. Nanoscale, 10, 12535–12542.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Q., Gao, Q., & Shi, J. (2004). Reversible intercalation of large-capacity hemoglobin into in situ prepared titanate interlayers with enhanced thermal and organic medium stabilities. Langmuir, 20, 10231–10237.

    Article  CAS  PubMed  Google Scholar 

  57. Guo, P. F., Zhang, D. D., Guo, Z. Y., Chen, M. L., & Wang, J. H. (2017). Copper-decorated titanate nanosheets: Novel homogeneous monolayers with a superior capacity for selective isolation of hemoglobin. ACS Applied Materials & Interfaces, 9, 28273–28280.

    Article  CAS  Google Scholar 

  58. Jiang, H., Yuan, H., Qu, Y., Liang, Y., Jiang, B., Wu, Q., Deng, N., Liang, Z., Zhang, L., & Zhang, Y. (2016). Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides. Talanta, 146, 225–230.

    Article  CAS  PubMed  Google Scholar 

  59. Shao, W., Liu, J., Yang, K., Liang, Y., Weng, Y., Li, S., Liang, Z., Zhang, L., & Zhang, Y. (2016). Hydrogen-bond interaction assisted branched copolymer hilic material for separation and N-glycopeptides enrichment. Talanta, 158, 361–367.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y., Wang, J., Gao, M., & Zhang, X. (2017). Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides. Proteomics, 17, 1700005.

    Article  CAS  Google Scholar 

  61. Song, Y., Li, X., Fan, J.-B., Kang, H., Zhang, X., Chen, C., Liang, X., & Wang, S. (2018). Interfacially polymerized particles with heterostructured nanopores for glycopeptide separation. Advanced Materials, 30, 1803299.

    Article  CAS  Google Scholar 

  62. Tanaka, K., Inafuku, K., Adachi, S., & Chujo, Y. (2009). Tuning of properties of poss-condensed water-soluble network polymers by modulating the cross-linking ratio between poss. Macromolecules, 42, 3489–3492.

    Article  CAS  Google Scholar 

  63. Sanil, E. S., Cho, K.-H., Hong, D.-Y., Lee, J. S., Lee, S.-K., Ryu, S. G., Lee, H. W., Chang, J.-S., & Hwang, Y. K. (2015). A polyhedral oligomeric silsesquioxane functionalized copper trimesate. Chemical Communications, 51, 8418–8420.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Y., Zhuang, Y., Shen, H., Chen, X., & Wang, J. (2017). A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchimica Acta, 184, 1037–1044.

    Article  CAS  Google Scholar 

  65. Ma, S., Zhang, L., Wang, S., Zhang, H., You, X., Ou, J., Ye, M., & Wei, Y. (2019). Preparation of epoxy-functionalized hierarchically porous hybrid monoliths via free radical polymerization and application in hilic enrichment of glycopeptides. Analytica Chimica Acta, 1058, 97–106.

    Article  CAS  PubMed  Google Scholar 

  66. de Groot, J., Kosters, H. A., & de Jongh, H. H. J. (2007). Deglycosylation of ovalbumin prohibits formation of a heat-stable conformer. Biotechnology and Bioengineering, 97, 735–741.

    Article  PubMed  CAS  Google Scholar 

  67. Parekh, R. B., Dwek, R. A., Sutton, B. J., Fernandes, D. L., Leung, A., Stanworth, D., Rademacher, T. W., Mizuochi, T., Taniguchi, T., Matsuta, K., Takeuchi, F., Nagano, Y., Miyamoto, T., & Kobata, A. (1985). Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature, 316, 452–457.

    Google Scholar 

  68. Wang, C., Eufemi, M., Turano, C., & Giartosio, A. (1996). Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry, 35, 7299–7307.

    Article  CAS  PubMed  Google Scholar 

  69. Moore, S. A., Anderson, B. F., Groom, C. R., Haridas, M., & Baker, E. N. (1997). Three-dimensional structure of diferric bovine lactoferrin at 2.8 angstrom resolution. Journal of Molecular Biology, 274, 222–236.

    Google Scholar 

  70. Zhang, Q., Huang, Y., Jiang, B., Hu, Y., **e, J., Gao, X., Jia, B., Shen, H., Zhang, W., & Yang, P. (2018). In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides. Analytical Chemistry, 90, 7357–7363.

    Article  CAS  PubMed  Google Scholar 

  71. Li, Y., Wang, H., You, X., Ma, S., Dong, J., Wei, Y., Ou, J., & Ye, M. (2018). Facile preparation of microporous organic polymers functionalized macroporous hydrophilic resin for selective enrichment of glycopeptides. Analytica Chimica Acta, 1030, 96–104.

    Article  CAS  PubMed  Google Scholar 

  72. Wang, J., Li, J., Wang, Y., Gao, M., Zhang, X., & Yang, P. (2016). Development of versatile metal-organic framework functionalized magnetic graphene core-shell biocomposite for highly specific recognition of glycopeptides. ACS Applied Materials & Interfaces, 8, 27482–27489.

    Article  CAS  Google Scholar 

  73. Li, J., Wang, J., Ling, Y., Chen, Z., Gao, M., Zhang, X., & Zhou, Y. (2017). Unprecedented highly efficient capture of glycopeptides by Fe3O4@Mg-MOF-74 core-shell nanoparticles. Chemical Communications, 53, 4018–4021.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, J., Li, J., Yan, G., Gao, M., & Zhang, X. (2019). Preparation of a thickness-controlled Mg-MOFs-based magnetic graphene composite as a novel hydrophilic matrix for the effective identification of the glycopeptide in the human urine. Nanoscale, 11, 3701–3709.

    Article  CAS  PubMed  Google Scholar 

  75. Ding, F., Chu, Z., Zhang, Q., Liu, H., & Zhang, W. (2019). Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of N-Glycopeptides. Analytica Chimica Acta, 1057, 145–151.

    CAS  PubMed  Google Scholar 

  76. Wang, J., Li, J., Gao, M., & Zhang, X. (2017). Self-assembling covalent organic framework functionalized magnetic graphene hydrophilic biocomposites as an ultrasensitive matrix for N-linked glycopeptide recognition. Nanoscale, 9, 10750–10756.

    Article  CAS  PubMed  Google Scholar 

  77. Shen, A., Guo, Z., Yu, L., Cao, L., & Liang, X. (2011). A novel zwitterionic hilic stationary phase based on “Thiol-Ene” click chemistry between cysteine and vinyl silica. Chemical Communications, 47, 4550–4552.

    Article  CAS  PubMed  Google Scholar 

  78. Cao, L., Zhang, Y., Chen, L., Shen, A., Zhang, X., Ren, S., Gu, J., Yu, L., & Liang, X. (2014). Sample preparation for mass spectrometric analysis of human serum N-glycans using hydrophilic interaction chromatography-based solid phase extraction. Analyst, 139, 4538–4546.

    Google Scholar 

  79. Liu, J., Yang, K., Shao, W., Li, S., Wu, Q., Zhang, S., Qu, Y., Zhang, L., & Zhang, Y. (2016). Synthesis of zwitterionic polymer particles via combined distillation precipitation polymerization and click chemistry for highly efficient enrichment of glycopeptide. ACS Applied Materials & Interfaces, 8, 22018–22024.

    Article  CAS  Google Scholar 

  80. Jiang, B., Liang, Y., Wu, Q., Jiang, H., Yang, K., Zhang, L., Liang, Z., Peng, X., & Zhang, Y. (2014). New GO-PEI-Au-L-Cys ZIC-HILIC composites: Synthesis and selective enrichment of glycopeptides. Nanoscale, 6, 5616–5619.

    Article  CAS  PubMed  Google Scholar 

  81. Wu, R., Li, L., & Deng, C. (2016). Highly efficient and selective enrichment of glycopeptides using easily synthesized MagG/PDA/Au/L-Cys composites. Proteomics, 16, 1311–1320.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, Y., Chen, Y., **ong, Z., Sun, X., Zhang, Q., Gan, Y., Zhang, L., & Zhang, W. (2017). Synthesis of magnetic zwitterionic-hydrophilic material for the selective enrichment of N-linked glycopeptides. Journal of Chromatography A, 1482, 23–31.

    Article  CAS  PubMed  Google Scholar 

  83. Ma, W., Xu, L., Li, X., Shen, S., Wu, M., Bai, Y., & Liu, H. (2017). Cysteine-functionalized metal-organic framework: Facile synthesis and high efficient enrichment of N-linked glycopeptides in cell lysate. ACS Applied Materials & Interfaces, 9, 19562–19568.

    Article  CAS  Google Scholar 

  84. Feng, X., Deng, C., Gao, M., & Zhang, X. (2018). Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Analytical and Bioanalytical Chemistry, 410, 989–998.

    Article  CAS  PubMed  Google Scholar 

  85. Jiao, F., Gao, F., Wang, H., Deng, Y., Zhang, Y., Qian, X., & Zhang, Y. (2017). Ultrathin Au nanowires assisted magnetic graphene-silica ZIC-HILIC composites for highly specific enrichment of N-linked glycopeptides. Analytica Chimica Acta, 970, 47–56.

    Article  CAS  PubMed  Google Scholar 

  86. **a, C., Jiao, F., Gao, F., Wang, H., Lv, Y., Shen, Y., Zhang, Y., & Qian, X. (2018). Two-dimensional MoS2-based zwitterionic hydrophilic interaction liquid chromatography material for the specific enrichment of glycopeptides. Analytical Chemistry, 90, 6651–6659.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, Y., Xu, Y., Zhang, C., Emmer, A., & Zheng, H. (2020). Amino acid-functionalized two-dimensional hollow cobalt sulfide nanoleaves for the highly selective enrichment of N-linked glycopeptides. Analytical Chemistry, 92, 2151–2158.

    Article  CAS  PubMed  Google Scholar 

  88. Guo, P.-F., Wang, X.-M., Wang, M.-M., Yang, T., Chen, M.-L., & Wang, J.-H. (2019). Two-dimensional titanate-based zwitterionic hydrophilic sorbent for the selective adsorption of glycoproteins. Analytica Chimica Acta, 1088, 72–78.

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Q., Deng, C. H., & Sun, N. (2018). Hydrophilic tripeptide-functionalized magnetic metal-organic frameworks for the highly efficient enrichment of N-linked glycopeptides. Nanoscale, 10, 12149–12155.

    Article  CAS  PubMed  Google Scholar 

  90. Fu, D., Liu, Y., Shen, A., **ao, Y., Yu, L., & Liang, X. (2019). Preparation of glutathione-functionalized zwitterionic silica material for efficient enrichment of sialylated N-glycopeptides. Analytical and Bioanalytical Chemistry, 411, 4131–4140.

    Article  CAS  PubMed  Google Scholar 

  91. Huan, W., Zhang, J., Qin, H., Huan, F., Wang, B., Wu, M., & Li, J. (2019). A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides. Nanoscale, 11, 10952–10960.

    Article  CAS  PubMed  Google Scholar 

  92. Tian, Y., Tang, R., Liu, L., Yu, Y., Ma, S., Gong, B., & Ou, J. (2020). Glutathione-modified ordered mesoporous silicas for enrichment of N-linked glycopeptides by hydrophilic interaction chromatography. Talanta, 217, 121082.

    Google Scholar 

  93. Ma, Y.-F., Wang, L.-J., Zhou, Y.-L., & Zhang, X.-X. (2019). A facilely synthesized glutathione-functionalized silver nanoparticle-grafted covalent organic framework for rapid and highly efficient enrichment of N-linked glycopeptides. Nanoscale, 11, 5526–5534.

    Article  CAS  PubMed  Google Scholar 

  94. Higashi, T., Tajima, A., Ohshita, N., Hirotsu, T., Hashim, I. I. A., Motoyama, K., Koyama, S., Iibuchi, R., Mieda, S., Handa, K., Kimoto, T., & Arima, H. (2015). Design and evaluation of the highly concentrated human igg formulation using cyclodextrin polypseudorotaxane hydrogels. An Official Journal of the American Association of Pharmaceutical Scientists, 16, 1290–1298.

    CAS  Google Scholar 

  95. Zheng, H., Li, X., & Jia, Q. (2018). Self-assembling glutamate-functionalized cyclodextrin molecular tube for specific enrichment of N-linked glycopeptides. ACS Applied Materials & Interfaces, 10, 19914–19921.

    Article  CAS  Google Scholar 

  96. Pu, C., Zhao, H., Hong, Y., Zhan, Q., & Lan, M. (2019). Elution-free ultra-sensitive enrichment for glycopeptides analyses: Using a degradable, post-modified Ce-metale-organic framework. Analytica Chimica Acta, 1045, 123–131.

    Article  CAS  PubMed  Google Scholar 

  97. Dong, X., Qin, H., Mao, J., Yu, D., Li, X., Shen, A., Yan, J., Yu, L., Guo, Z., Ye, M., Zou, H., & Liang, X. (2017). In-depth analysis of glycoprotein sialylation in serum using a dual-functional material with superior hydrophilicity and switchable surface charge. Analytical Chemistry, 89, 3966–3972.

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, J., Sun, Z., Cheng, K., Chen, R., Ye, M., Xu, B., Sun, D., Wang, L., Liu, J., Wang, F., & Zou, H. (2014). Comprehensive map** of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry. Journal of Proteome Research, 13, 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  99. Gale, P. A., & Caltagirone, C. (2015). Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44, 4212–4227.

    Article  CAS  PubMed  Google Scholar 

  100. Edwards, S. J., Valkenier, H., Busschaert, N., Gale, P. A., & Davis, A. P. (2015). High-affinity anion binding by steroidal squaramide receptors. Angewandte Chemie International Edition, 54, 4592–4596.

    Article  CAS  PubMed  Google Scholar 

  101. Nowick, J. S. (2008). Exploring Β-sheet structure and interactions with chemical model systems. Accounts of Chemical Research, 41, 1319–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Qing, G., Li, X., **ong, P., Chen, C., Zhan, M., Liang, X., & Sun, T. (2016). Dipeptide-based carbohydrate receptors and polymers for glycopeptide enrichment and glycan discrimination. ACS Applied Materials & Interfaces, 8, 22084–22092.

    Article  CAS  Google Scholar 

  103. Huang, G., **ong, Z., Qin, H., Zhu, J., Sun, Z., Zhang, Y., Peng, X., Ou, J., & Zou, H. (2014). Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Analytica Chimica Acta, 809, 61–68.

    Google Scholar 

  104. Chen, Y., **ong, Z., Zhang, L., Zhao, J., Zhang, Q., Peng, L., Zhang, W., Ye, M., & Zou, H. (2015). Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale, 7, 3100–3108.

    Article  CAS  PubMed  Google Scholar 

  105. Pan, Y., Ma, C., Tong, W., Fan, C., Zhang, Q., Zhang, W., Tian, F., Peng, B., Qin, W., & Qian, X. (2015). Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment. Analytical Chemistry, 87, 656–662.

    Google Scholar 

  106. Ji, Y., Lv, R., Song, S., Huang, J., Zhang, L., Huang, G., Li, J., & Ou, J. (2019). Facile fabrication of zwitterionic magnetic composites by one-step distillation-precipitation polymerization for highly specific enrichment of glycopeptides. Analytica Chimica Acta, 1053, 43–53.

    Article  CAS  PubMed  Google Scholar 

  107. Yeh, C.-H., Chen, S.-H., Li, D.-T., Lin, H.-P., Huang, H.-J., Chang, C.-I., Shih, W.-L., Chern, C.-L., Shi, F.-K., & Hsu, J.-L. (2012). Magnetic bead-based hydrophilic interaction liquid chromatography for glycopeptide enrichments. Journal of Chromatography A, 1224, 70–78.

    Article  CAS  PubMed  Google Scholar 

  108. Dai, Q., Ma, J., Ma, S., Wang, S., Li, L., Zhu, X., & Qiao, X. (2016). Cationic ionic liquids organic ligands based metal-organic frameworks for fabrication of core-shell microspheres for hydrophilic interaction liquid chromatography. ACS Applied Materials & Interfaces, 8, 21632–21639.

    Article  CAS  Google Scholar 

  109. Shu, Y., Lu, J., Mao, Q.-X., Song, R.-S., Wang, X.-Y., Chen, X.-W., & Wang, J.-H. (2017). Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon, 114, 324–333.

    Article  CAS  Google Scholar 

  110. Qiao, L., Dou, A., Shi, X., Li, H., Shan, Y., Lu, X., & Xu, G. (2013). Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. Journal of Chromatography A, 1286, 137–145.

    Article  CAS  PubMed  Google Scholar 

  111. Guo, Z.-Y., Hai, X., Wang, Y.-T., Shu, Y., Chen, X.-W., & Wang, J.-H. (2018). Core-corona magnetic nanospheres functionalized with zwitterionic polymer ionic liquid for highly selective isolation of glycoprotein. Biomacromolecules, 19, 53–61.

    Article  CAS  PubMed  Google Scholar 

  112. Zou, X., Jie, J., & Yang, B. (2016). A facile and cheap synthesis of zwitterion coatings of the CS@PGMA@IDA nanomaterial for highly specific enrichment of glycopeptides. Chemical Communications, 52, 3251–3253.

    Article  CAS  PubMed  Google Scholar 

  113. Sun, N., Wang, J., Yao, J., & Deng, C. (2017). Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked glycopeptide. Analytical Chemistry, 89, 1764–1771.

    Article  CAS  PubMed  Google Scholar 

  114. Rawn, J. D., & Lienhard, G. E. (1974). Binding of boronic acids to chymotrypsin. Biochemistry, 13, 3124–3130.

    Article  CAS  PubMed  Google Scholar 

  115. Krishnamoorthy, M., Hakobyan, S., Ramstedt, M., & Gautrot, J. E. (2014). Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chemical Reviews, 114, 10976–11026.

    Article  CAS  PubMed  Google Scholar 

  116. Sellergren, B., Lepistoe, M., & Mosbach, K. (1988). Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society, 110, 5853–5860.

    Article  CAS  Google Scholar 

  117. Haupt, K., & Mosbach, K. (2000). Molecularly imprinted polymers and their use in biomimetic sensors. Chemical Reviews, 100, 2495–2504.

    Article  CAS  PubMed  Google Scholar 

  118. Xu, H., Schönhoff, M., & Zhang, X. (2012). Unconventional layer-by-layer assembly: Surface molecular imprinting and its applications. Small (Weinheim an der Bergstrasse, Germany), 8, 517–523.

    Article  CAS  Google Scholar 

  119. Piletsky, S. A., Piletska, E. V., Bossi, A., Karim, K., Lowe, P., & Turner, A. P. F. (2001). Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosensors & Bioelectronics, 16, 701–707.

    Article  CAS  Google Scholar 

  120. Lin, H.-Y., Hsu, C.-Y., Thomas, J. L., Wang, S.-E., Chen, H.-C., & Chou, T.-C. (2006). The microcontact imprinting of proteins: The effect of cross-linking monomers for lysozyme, ribonuclease a and myoglobin. Biosensors & Bioelectronics, 22, 534–543.

    Article  CAS  Google Scholar 

  121. Dai, J., Pan, J., Xu, L., Li, X., Zhou, Z., Zhang, R., & Yan, Y. (2012). Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. Journal of Hazardous Materials, 205–206, 179–188.

    Article  PubMed  CAS  Google Scholar 

  122. Wu, J., Fu, X., **e, C., Yang, M., Fang, W., & Gao, S. (2011). TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting. Sensors and Actuators B-Chemical, 160, 511–516.

    Article  CAS  Google Scholar 

  123. Verheyen, E., Schillemans, J. P., van Wijk, M., Demeniex, M.-A., Hennink, W. E., & van Nostrum, C. F. (2011). Challenges for the effective molecular imprinting of proteins. Biomaterials, 32, 3008–3020.

    Article  CAS  PubMed  Google Scholar 

  124. Nematollahzadeh, A., Sun, W., Aureliano, C. S., Lutkemeyer, D., Stute, J., Abdekhodaie, M. J., Shojaei, A., & Sellergren, B. (2011). High-capacity hierarchically imprinted polymer beads for protein recognition and capture. Angewandte Chemie International Edition, 50, 495–498.

    Article  CAS  PubMed  Google Scholar 

  125. Glad, M., Norrlow, O., Sellergren, B., Siegbahn, N., & Mosbach, K. (1985). Use of Silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. Journal of Chromatography, 347, 11–23.

    Article  CAS  Google Scholar 

  126. Zou, X., Liu, D., Zhong, L., Yang, B., Lou, Y., & Yin, Y. (2012). Synthesis and characterization of a novel boronic acid-functionalized chitosan polymeric nanosphere for highly specific enrichment of glycopeptides. Carbohydrate Polymers, 90, 799–804.

    Article  CAS  PubMed  Google Scholar 

  127. Wuhrer, M., Hokke, C. H., & Deelder, A. M. (2010). Glycopeptide analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry reveals novel features of horseradish peroxidase glycosylation. Rapid Communications in Mass Spectrometry, 18, 1741–1748.

    Article  CAS  Google Scholar 

  128. Xu, G., Zhang, W., Wei, L., Lu, H., & Yang, P. (2013). Boronic acid-functionalized detonation nanodiamond for specific enrichment of glycopeptides in glycoproteome analysis. Analyst, 138, 1876–1885.

    Google Scholar 

  129. Yeap, W. S., Tan, Y. Y., & Loh, K. P. (2008). Using detonation nanodiamond for the specific capture of glycoproteins. Analytical Chemistry, 80, 4659–4665.

    Article  CAS  PubMed  Google Scholar 

  130. Chang, L., Wu, H., He, X., Chen, L., & Zhang, Y. (2017). A highly sensitive fluorescent turn-on biosensor for glycoproteins based on boronic acid functional polymer capped Mn-doped ZnS quantum dots. Analytica Chimica Acta, 995, 91–98.

    Article  CAS  PubMed  Google Scholar 

  131. Dr, H. C. K., Prof, M. G. F., & Prof, K. B. S. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004–2021.

    Article  Google Scholar 

  132. Yang, F., Mao, J., He, X. W., Chen, L. X., & Zhang, Y. K. (2013). Preparation of a boronate-functionalized affinity hybrid monolith for specific capture of glycoproteins. Analytical and Bioanalytical Chemistry, 405, 5321–5331.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, X., He, X., Chen, L., & Zhang, Y. (2014). A combination of distillation-precipitation polymerization and click chemistry: Fabrication of boronic acid functionalized Fe3O4 hybrid composites for enrichment of glycoproteins. Journal of Materials Chemistry B, 2, 3254–3262.

    Article  CAS  PubMed  Google Scholar 

  134. Su, J., He, X., Chen, L., & Zhang, Y. (2018). A combination of “Thiol – Ene” click chemistry and surface initiated atom transfer radical polymerization: Fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins. Talanta, 180, 54–60.

    Article  CAS  PubMed  Google Scholar 

  135. Chen, J., Li, X., Feng, M., Luo, K., Yang, J., & Zhang, B. (2017). Novel boronate material affords efficient enrichment of glycopeptides by synergized hydrophilic and affinity interactions. Analytical and Bioanalytical Chemistry, 409, 519–528.

    Article  CAS  PubMed  Google Scholar 

  136. Li, B., Yu, B., Ye, Q., & Zhou, F. (2015). Tap** the potential of polymer brushes through synthesis. Accounts of Chemical Research, 48, 229–237.

    Article  PubMed  CAS  Google Scholar 

  137. Gao, T., Wang, X., Yu, B., Wei, Q., **a, Y., & Zhou, F. (2013). Noncovalent microcontact printing for grafting patterned polymer brushes on graphene films. Langmuir, 29, 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Y., Zhang, S., Liu, X., Pei, Q., Qian, J., Zhuang, Q., & Han, Z. (2015). Preparation of solution-processable reduced graphene oxide/polybenzoxazole nanocomposites with improved dielectric properties. Macromolecules, 48, 365–372.

    Article  CAS  Google Scholar 

  139. Wu, T., Zou, G., Hu, J., & Liu, S. (2009). Fabrication of photoswitchable and thermotunable multicolor fluorescent hybrid silica nanoparticles coated with dye-labeled poly(N-isopropylacrylamide) brushes. Chemistry of Materials, 21, 3788–3798.

    Article  CAS  Google Scholar 

  140. Wu, T., Zhang, Y., Wang, X., & Liu, S. (2008). Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chemistry of Materials, 20, 101–109.

    Article  CAS  Google Scholar 

  141. Nagase, K., Kobayashi, J., Kikuchi, A., Akiyama, Y., Kanazawa, H., & Okano, T. (2016). Protein separations via thermally responsive ionic block copolymer brush layers. RSC Advances, 6, 26254–26263.

    Article  CAS  Google Scholar 

  142. Jiang, L., Messing, M. E., & Ye, L. (2017). Temperature and pH dual-responsive core-brush nanocomposite for enrichment of glycoproteins. ACS Applied Materials & Interfaces, 9, 8985–8995.

    Article  CAS  Google Scholar 

  143. Zhang, X., He, X., Chen, L., & Zhang, Y. (2012). Boronic acid modified magnetic nanoparticles for enrichment of glycoproteins via azide and alkyne click chemistry. Journal of Materials Chemistry, 22, 16520–16526.

    Article  CAS  Google Scholar 

  144. Wang, Y., Liu, M., **e, L., Fang, C., **ong, H., & Lu, H. (2014). Highly efficient enrichment method for glycopeptide analyses: Using specific and nonspecific nanoparticles synergistically. Analytical Chemistry, 86, 2057–2064.

    Article  CAS  PubMed  Google Scholar 

  145. Li, S., Li, D., Sun, L., Yao, Y., & Yao, C. (2018). A designable aminophenylboronic acid functionalized magnetic Fe3O4/ZIF-8/APBA for specific recognition of glycoproteins and glycopeptides. RSC Advances, 8, 6887–6892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ma, R., Hu, J., Cai, Z., & Ju, H. (2014). Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides. Nanoscale, 6, 3150–3156.

    Article  CAS  PubMed  Google Scholar 

  147. Wang, J., Wang, Y., Gao, M., Zhang, X., & Yang, P. (2015). Multilayer hydrophilic poly(phenol-formaldehyde resin)-coated magnetic graphene for boronic acid immobilization as a novel matrix for glycoproteome analysis. ACS Applied Materials & Interfaces, 7, 16011–16017.

    Article  CAS  Google Scholar 

  148. Qu, Y., Liu, J., Yang, K., Liang, Z., Zhang, L., & Zhang, Y. (2012). Boronic acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment. Chemistry—A European Journal, 18, 9056–9062.

    Article  CAS  PubMed  Google Scholar 

  149. Yan, J., Springsteen, G., Deeter, S., & Wang, B. (2004). The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—It is not as simple as it appears. Tetrahedron, 60, 11205–11209.

    Article  CAS  Google Scholar 

  150. Lü, C., Li, H., Wang, H., & Liu, Z. (2013). Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis. Analytical Chemistry, 85, 2361–2369.

    Article  PubMed  CAS  Google Scholar 

  151. Li, D., Li, Y., Li, X., Bie, Z., Pan, X., Zhang, Q., & Liu, Z. (2015). A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. Journal of Chromatography A, 1384, 88–96.

    Article  CAS  PubMed  Google Scholar 

  152. Wang, H., Bie, Z., Lü, C., & Liu, Z. (2013). Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins. Chemical Science, 4, 4298–4303.

    Article  CAS  Google Scholar 

  153. Delacroix, D. L., Hodgson, H. J. F., Mcpherson, A., Dive, C., & Vaerman, J. P. (1982). Selective transport of polymeric immunoglobulin A in bile. Quantitative relationships of monomeric and polymeric immunoglobulin A, immunoglobulin M, and other proteins in serum, bile, and saliva. Journal of Clinical Investigation, 70, 230–241.

    Google Scholar 

  154. Hu, S., Arellano, M., Boontheung, P., Wang, J., Zhou, H., Jiang, J., Elashoff, D., Wei, R., Loo, J. A., & Wong, D. T. (2008). Salivary proteomics for oral cancer biomarker discovery. Clinical Cancer Research, 14, 6246–6252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rayment, S., Liu, B., Offner, G. D., Oppenheim, F. G., & Troxler, R. F. (2000). Immunoquantification of human salivary mucins Mg1 and Mg2 in stimulated whole saliva: Factors influencing mucin levels. Journal of Dental Research, 79, 1765–1772.

    Article  CAS  PubMed  Google Scholar 

  156. Rose, M. C. (2006). Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiological Reviews, 86, 245–278.

    Article  CAS  PubMed  Google Scholar 

  157. Lee, J. Y., Chung, J. W., Kim, Y. K., Chung, S. C., & Kho, H. S. (2010). Comparison of the composition of oral mucosal residual saliva with whole saliva. Oral Diseases, 13, 550–554.

    Article  Google Scholar 

  158. Liu, D. (2012). Saliva: A potential media for disease diagnostics and monitoring. Oral Oncology, 48, 569–577.

    Article  PubMed  Google Scholar 

  159. Rui, V., Lobo, M. J. C., Ferrer-Correira, A. J., Dubin, J. R., & Amado, F. M. L. (2004). Identification of human whole saliva protein components using proteomics. Proteomics, 4, 1109–1115.

    Article  CAS  Google Scholar 

  160. Quintana, M., Palicki, O., Lucchi, G., Ducoroy, P., Chambon, C., Salles, C., & Morzel, M. (2009). Inter-individual variability of protein patterns in saliva of healthy adults. Journal of Proteomics, 72, 822–830.

    Article  CAS  PubMed  Google Scholar 

  161. Ramachandran, P., Boontheung, P., **e, Y., Sondej, M., Wong, D. T., & Loo, J. A. (2006). Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry. Journal of Proteome Research, 5, 1493–1503.

    Article  CAS  PubMed  Google Scholar 

  162. Dreyer, D. R., Bielawski, C. W., & Todd, A. D. (2014). Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 43, 5288–5301.

    Google Scholar 

  163. Li, D., & Kaner, R. B. (2008). Materials science - Graphene-based materials. Science, 320, 1170–1171.

    Article  CAS  PubMed  Google Scholar 

  164. Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8, 3498–3502.

    Article  CAS  PubMed  Google Scholar 

  165. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442, 282–286.

    Article  CAS  PubMed  Google Scholar 

  166. Jiang, B., Qu, Y., Zhang, L., Liang, Z., & Zhang, Y. (2016). 4-Mercaptophenylboronic acid functionalized graphene oxide composites: Preparation, characterization and selective enrichment of glycopeptides. Analytica Chimica Acta, 912, 41–48.

    Article  CAS  PubMed  Google Scholar 

  167. Yang, J., He, X., Chen, L., & Zhang, Y. (2017). Thiol-yne click synthesis of boronic acid functionalized silica nanoparticle-graphene oxide composites for highly selective enrichment of glycoproteins. Journal of Chromatography A, 1513, 118–125.

    Article  CAS  PubMed  Google Scholar 

  168. Qi, D., Zhang, H., Tang, J., Deng, C., & Zhang, X. (2010). Facile synthesis of mercaptophenylboronic acid-functionalized core−shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. Journal of Physical Chemistry C, 114, 9221–9226.

    Article  CAS  Google Scholar 

  169. Yao, J., Wang, J., Sun, N., & Deng, C. (2017). One-step functionalization of magnetic nanoparticles with 4-mercaptophenylboronic acid for a highly efficient analysis of N-glycopeptides. Nanoscale, 9, 16024–16029.

    Article  CAS  PubMed  Google Scholar 

  170. Li, S., Qin, Y., Zhong, G., Cai, C., Chen, X., & Chen, C. (2018). Highly efficient separation of glycoprotein by dual-functional magnetic metal-organic framework with hydrophilicity and boronic acid affinity. ACS Applied Materials & Interfaces, 10, 27612–27620.

    Article  CAS  Google Scholar 

  171. Ren, L., Liu, Z., Liu, Y., Dou, P., & Chen, H.-Y. (2009). Ring-opening polymerization with synergistic co-monomers: Access to a boronate-functionalized polymeric monolith for the specific capture of cis-diol-containing biomolecules under neutral conditions. Angewandte Chemie International Edition, 48, 6704–6707.

    Article  CAS  PubMed  Google Scholar 

  172. Liu, Y., Ren, L., & Liu, Z. (2011). A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chemical Communications, 47, 5067–5069.

    Article  CAS  PubMed  Google Scholar 

  173. Li, H., Liu, Y., Liu, J., & Liu, Z. (2011). A wulff-type boronate for boronate affinity capture of cis-diol compounds at medium acidic pH condition. Chemical Communications, 47, 8169–8171.

    Google Scholar 

  174. Wulff, G. (1982). Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure and Applied Chemistry, 54, 2093–2102.

    Article  Google Scholar 

  175. Dowlut, M., & Hall, D. G. (2006). An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. Journal of the American Chemical Society, 128, 4226–4227.

    Article  CAS  PubMed  Google Scholar 

  176. Pal, A., Berube, M., & Hall, D. G. (2010). Design, synthesis, and screening of a library of peptidyl bis(boroxoles) as oligosaccharide receptors in water: Identification of a receptor for the tumor marker Tf-antigen disaccharide. Angewandte Chemie International Edition, 49, 1492–1495.

    Article  CAS  PubMed  Google Scholar 

  177. Ding, C. Z., Zhang, Y.-K., Li, X., Liu, Y., Zhang, S., Zhou, Y., Plattner, J. J., Baker, S. J., Liu, L., Duan, M., Jarvest, R. L., Ji, J., Kazmierski, W. M., Tallant, M. D., Wright, L. L., Smith, G. K., Crosby, R. M., Wang, A. A., Ni, Z.-J., … Wright, J. (2010). Synthesis and biological evaluations of P4-benzoxaborole-substituted macrocyclic inhibitors of HCV NS3 protease. Bioorganic & Medicinal Chemistry Letters, 20, 7317–7322.

    Article  CAS  Google Scholar 

  178. Li, H., Wang, H., Liu, Y., & Liu, Z. (2012). A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chemical Communications, 48, 4115–4117.

    Article  CAS  PubMed  Google Scholar 

  179. Bie, Z., Chen, Y., Li, H., Wu, R., & Liu, Z. (2014). Off-line hyphenation of boronate affinity monolith-based extraction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for efficient analysis of glycoproteins/glycopeptides. Analytica Chimica Acta, 834, 1–8.

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, Y., Ma, W., Li, D., Yu, M., Guo, J., & Wang, C. (2014). Benzoboroxole-functionalized magnetic core/shell microspheres for highly specific enrichment of glycoproteins under physiological conditions. Small (Weinheim an der Bergstrasse, Germany), 10, 1379–1386.

    Article  CAS  Google Scholar 

  181. Chen, G., Huang, S., Kou, X., Zhang, J., Wang, F., Zhu, F., & Ouyang, G. (2018). Novel magnetic microprobe with benzoboroxole-modified flexible multisite arm for high-efficiency cis-diol biomolecule detection. Analytical Chemistry, 90, 3387–3394.

    Article  CAS  PubMed  Google Scholar 

  182. Wu, Q., Jiang, B., Weng, Y., Liu, J., Li, S., Hu, Y., Yang, K., Liang, Z., Zhang, L., & Zhang, Y. (2018). 3-Carboxybenzoboroxole functionalized polyethylenimine modified magnetic graphene oxide nanocomposites for human plasma glycoproteins enrichment under physiological conditions. Analytical Chemistry, 90, 2671–2677.

    Article  CAS  PubMed  Google Scholar 

  183. Li, S., & Huo, F. (2015). Metal-organic framework composites: from fundamentals to applications. Nanoscale, 7, 7482–7501.

    Article  CAS  PubMed  Google Scholar 

  184. Furukawa, H., Cordova, K. E., O'Keeffe, M., Yaghi, & O. M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341, 974.

    Google Scholar 

  185. Yang, Q., Zhu, Y., Luo, B., Lan, F., Wu, Y., & Gu, Z. (2017). pH-responsive magnetic metal-organic framework nanocomposites for selective capture and release of glycoproteins. Nanoscale, 9, 527–532.

    Article  CAS  PubMed  Google Scholar 

  186. **e, Y., Liu, Q., Li, Y., & Deng, C. (2018). Core-shell structured magnetic metal-organic framework composites for highly selective detection of N-glycopeptides based on boronic acid affinity chromatography. Journal of Chromatography A, 1540, 87–93.

    Article  CAS  PubMed  Google Scholar 

  187. Dénès, F., Pichowicz, M., Povie, G., & Renaud, P. (2014). Thiyl radicals in organic synthesis. Chemical Reviews, 114, 2587–2693.

    Article  PubMed  CAS  Google Scholar 

  188. Liu, J., Yang, K., Shao, W., Qu, Y., Li, S., Wu, Q., Zhang, L., & Zhang, Y. (2016). Boronic acid-functionalized particles with flexible three-dimensional polymer branch for highly specific recognition of glycoproteins. ACS Applied Materials & Interfaces, 8, 9552–9556.

    Article  CAS  Google Scholar 

  189. Pan, M., Sun, Y., Zheng, J., & Yang, W. (2013). Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein. ACS Applied Materials & Interfaces, 5, 8351–8358.

    Article  CAS  Google Scholar 

  190. Wang, M., Zhang, X., & Deng, C. (2015). Facile synthesis of magnetic poly(styrene-co-4-vinylbenzene-boronic acid) microspheres for selective enrichment of glycopeptides. Proteomics, 15, 2158–2165.

    Article  CAS  PubMed  Google Scholar 

  191. An, X., He, X., Chen, L., & Zhang, Y. (2016). Graphene oxide-based boronate polymer brushes via surface initiated atom transfer radical polymerization for the selective enrichment of glycoproteins. Journal of Materials Chemistry B, 4, 6125–6133.

    Article  CAS  PubMed  Google Scholar 

  192. Hoshino, Y., Koide, H., Urakami, T., Kanazawa, H., Kodama, T., Oku, N., & Shea, K. J. (2010). Recognition, neutralization, and clearance of target peptides in the bloodstream of living mice by molecularly imprinted polymer nanoparticles: A plastic antibody. Journal of the American Chemical Society, 132, 6644.

    Google Scholar 

  193. Lin, Z., Sun, L., Liu, W., **a, Z., Yang, H., & Chen, G. (2014). Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment. Journal of Materials Chemistry B, 2, 637–643.

    Article  CAS  PubMed  Google Scholar 

  194. Stephenson-Brown, A., Acton, A. L., Preece, J. A., Fossey, J. S., & Mendes, P. M. (2015). Selective glycoprotein detection through covalent templating and allosteric click-imprinting. Chemical Science, 6, 5114–5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li, Y., Hong, M., Miaomiao, B. Q., Lin, Z., Cai, Z., & Chen, G. (2013). Novel composites of multifunctional Fe3O4@Au nanofibers for highly efficient glycoprotein imprinting. Journal of Materials Chemistry B, 1, 1044–1051.

    Google Scholar 

  196. Wang, S., Ye, J., Bie, Z., & Liu, Z. (2014). Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chemical Science, 5, 1135–1140.

    Article  CAS  Google Scholar 

  197. Hjerten, S., Li, Y. M., Liao, J. L., Mohammad, J., Nakazato, K., & Pettersson, G. (1992). Continuous beds - High-resolving, cost-effective chromatographic matrices. Nature, 356, 810–811.

    Article  Google Scholar 

  198. Svec, F., & Frechet, J. M. J. (1996). New designs of macroporous polymers and supports: From separation to biocatalysis. Science, 273, 205–211.

    Article  CAS  PubMed  Google Scholar 

  199. Peters, E. C., Svec, F., & Frechet, J. M. J. (1999). Rigid macroporous polymer monoliths. Advanced Materials, 11, 1169–1181.

    Article  CAS  Google Scholar 

  200. Hao, Y., Gao, R., Liu, D., He, G., Tang, Y., & Guo, Z. (2016). A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity. Talanta, 153, 211–220.

    Article  CAS  PubMed  Google Scholar 

  201. Luo, J., Huang, J., Cong, J., Wei, W., & Liu, X. (2017). Double recognition and selective extraction of glycoprotein based on the molecular imprinted graphene oxide and boronate affinity. ACS Applied Materials & Interfaces, 9, 7735–7744.

    Article  CAS  Google Scholar 

  202. Zhu, H., Yao, H., **a, K., Liu, J., Yin, X., Zhang, W., & Pan, J. (2018). Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chemical Engineering Journal, 346, 317–328.

    Article  CAS  Google Scholar 

  203. Lin, Z., Wang, J., Tan, X., Sun, L., Yu, R., Yang, H., & Chen, G. (2013). Preparation of boronate-functionalized molecularly imprinted monolithic column with polydopamine coating for glycoprotein recognition and enrichment. Journal of Chromatography A, 1319, 141–147.

    Article  CAS  PubMed  Google Scholar 

  204. Li, L., Lu, Y., Bie, Z., Chen, H. Y., & Liu, Z. (2013). Photolithographic boronate affinity molecular imprinting: A general and facile approach for glycoprotein imprinting. Angewandte Chemie International Edition, 52, 7451–7454.

    Article  CAS  PubMed  Google Scholar 

  205. Urano, Y., Kamiya, M., Kanda, K., Ueno, T., Hirose, K., & Nagano, T. (2005). Evolution of fluorescein as a platform for finely tunable fluorescence probes. Journal of the American Chemical Society, 127, 4888–4894.

    Article  CAS  PubMed  Google Scholar 

  206. Zhang, W., Liu, W., Li, P., **ao, H., Wang, H., & Tang, B. (2014). A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angewandte Chemie International Edition, 53, 12489–12493.

    CAS  PubMed  Google Scholar 

  207. Sun, Y.-M., Wang, W., Wei, Y.-Y., Deng, N.-N., Liu, Z., Ju, X.-J., **e, R., & Chu, L.-Y. (2014). In situ fabrication of a temperature- and ethanol-responsive smart membrane in a microchip. Lab on a Chip, 14, 2418–2427.

    Article  CAS  PubMed  Google Scholar 

  208. Guo, T., Deng, Q., Fang, G., Yun, Y., Hu, Y., & Wang, S. (2016). A double responsive smart upconversion fluorescence sensing material for glycoprotein. Biosensors & Bioelectronics, 85, 596–602.

    Article  CAS  Google Scholar 

  209. Kubo, T., Furuta, H., Naito, T., Sano, T., & Otsuka, K. (2017). Selective adsorption of carbohydrates and glycoproteins via molecularly imprinted hydrogels: Application to visible detection by a boronic acid monomer. Chemical Communications, 53, 7290–7293.

    Article  CAS  PubMed  Google Scholar 

  210. Ma, R.-T., Ha, W., Chen, J., & Shi, Y.-P. (2016). Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein. Journal of Materials Chemistry B, 4, 2620–2627.

    Article  CAS  PubMed  Google Scholar 

  211. Ye, J., Chen, Y., & Liu, Z. (2014). A boronate affinity sandwich assay: An appealing alternative to immunoassays for the determination of glycoproteins. Angewandte Chemie International Edition, 53, 10386–10389.

    Article  CAS  PubMed  Google Scholar 

  212. Qian, X. M., & Nie, S. M. (2008). Single-molecule and single-nanoparticle SERs: From fundamental mechanisms to biomedical applications. Chemical Society Reviews, 37, 912–920.

    Article  CAS  PubMed  Google Scholar 

  213. Porter, M. D., Lipert, R. J., Siperko, L. M., Wang, G., & Narayanan, R. (2008). SERS as a bioassay platform: Fundamentals, design, and applications. Chemical Society Reviews, 37, 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  214. Li, J. F., Huang, Y. F., Ding, Y., Yang, Z. L., Li, S. B., Zhou, X. S., Fan, F. R., Zhang, W., Zhou, Z. Y., Wu, D. Y., Ren, B., Wang, Z. L., & Tian, Z. Q. (2010). Shell-isolated nanoparticle-enhanced raman spectroscopy. Nature, 464, 392–395.

    Article  CAS  PubMed  Google Scholar 

  215. Bi, X., & Liu, Z. (2014). Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting. Analytical Chemistry, 86, 959–966.

    Article  CAS  PubMed  Google Scholar 

  216. Wang, L., & Zhang, Z., (2007). Molecular imprinted polymer-based chemiluminescence imaging sensor for the detection of trans-resveratrol. Analytica Chimica Acta, 592, 115–120.

    Google Scholar 

  217. Yu, J., Zhang, C.,  Dai, P., & Ge, S. (2009). Highly selective molecular recognition and high throughput detection of melamine based on molecularly imprinted sol–gel film. Analytica Chimica Acta, 651, 209–214.

    Google Scholar 

  218. He, P., Zhu, H., Ma, Y., Li, N., Niu, X., Wei, M., & Pan, J. (2019). Rational design and fabrication of surface molecularly imprinted polymers based on multi-boronic acid sites for selective capture glycoproteins. Chemical Engineering Journal, 367, 55–63.

    Google Scholar 

  219. Wei, J.-R., Ni, Y.-L., Zhang, W., Zhang, Z.-Q., & Zhang, J. (2017). Detection of glycoprotein through fluorescent boronic acid-based molecularly imprinted polymer. Analytica Chimica Acta, 960, 110–116.

    Article  CAS  PubMed  Google Scholar 

  220. **ng, R., Wang, S., Bie, Z., He, H., & Liu, Z. (2017). Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting. Nature Protocols, 12, 964.

    Article  CAS  PubMed  Google Scholar 

  221. Kamon, Y., Matsuura, R., Kitayama, Y., Ooya, T., & Takeuchi, T. (2014). Precisely controlled molecular imprinting of glutathione-S-transferase by orientated template immobilization using specific interaction with an anchored ligand on a gold substrate. Polymer Chemistry, 5, 4764–4771.

    Article  CAS  Google Scholar 

  222. Bie, Z., Chen, Y., Ye, J., Wang, S., & Liu, Z. (2015). Boronate-affinity glycan-oriented surface imprinting: A new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angewandte Chemie International Edition, 54, 10211–10215.

    Article  CAS  PubMed  Google Scholar 

  223. Bie, Z., **ng, R., He, X., Ma, Y., Chen, Y., & Liu, Z. (2018). Precision imprinting of glycopeptides for facile preparation of glycan-specific artificial antibodies. Analytical Chemistry, 90, 9845–9852.

    Article  CAS  PubMed  Google Scholar 

  224. Ketteler, M., Bongartz, P., Westenfeld, R., Wildberger, J. E., Mahnken, A. H., Böhm, R., Metzger, T., Wanner, C., Jahnen-Dechent, W., & Floege, J. (2003). Association of low fetuin-a (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: A cross-sectional study. Lancet, 361, 827–833.

    Article  CAS  PubMed  Google Scholar 

  225. Stefan, N., Hennige, A. M., Staiger, H., Machann, J., Schick, F., Kröber, S. M., Machicao, F., Fritsche, A., & Häring, H.-U. (2006). Alpha(2)-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care, 29, 853–857.

    Google Scholar 

  226. Trang, H. T., Park, S., Lee, H., Park, S., Kim, B., Kim, O.-H., Oh, B.-C., Lee, D., & Lee, H. (2012). Ultrasmall gold nanoparticles for highly specific isolation/enrichment of N-linked glycosylated peptides. Analyst, 137, 991–998.

    Google Scholar 

  227. Nishikaze, T., Kawabata, S.-I., Iwamoto, S., & Tanaka, K. (2013). Reversible hydrazide chemistry-based enrichment for O-GlcNAc-modified peptides and glycopeptides having non-reducing GlcNAc residues. Analyst, 138, 7224–7232.

    Google Scholar 

  228. Cao, Q., Ma, C., Bai, H., Li, X., Yan, H., Zhao, Y., Ying, W., & Qian, X. (2014). Multivalent hydrazide-functionalized magnetic nanoparticles for glycopeptide enrichment and identification. Analyst, 139, 603–609.

    Article  CAS  PubMed  Google Scholar 

  229. Liu, L., Yu, M., Zhang, Y., Wang, C., & Lu, H. (2014). Hydrazide functionalized core-shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides. ACS Applied Materials & Interfaces, 6, 7823–7832.

    Article  CAS  Google Scholar 

  230. Zhang, L., Jiang, H., Yao, J., Wang, Y., Fang, C., Yang, P., & Lu, H. (2014). Highly specific enrichment of N-linked glycopeptides based on hydrazide functionalized soluble nanopolymers. Chemical Communications, 50, 1027–1029.

    Article  CAS  PubMed  Google Scholar 

  231. Bai, H., Fan, C., Zhang, W., Pan, Y., Ma, L., Ying, W., Wang, J., Deng, Y., Qian, X., & Qin, W. (2015). A Ph-responsive soluble polymer-based homogeneous system for fast and highly efficient N-glycoprotein/glycopeptide enrichment and identification by mass spectrometry. Chemical Science, 6, 4234–4241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Bai, H., Pan, Y., Guo, C., Zhao, X., Shen, B., Wang, X., Liu, Z., Cheng, Y., Qin, W., & Qian, X. (2017). Synthesis of hydrazide-functionalized hydrophilic polymer hybrid graphene oxide for highly efficient N-glycopeptide enrichment and identification by mass spectrometry. Talanta, 171, 124–131.

    Article  CAS  PubMed  Google Scholar 

  233. Sajid, M. S., Jabeen, F., Hussain, D., Ashiq, M. N., & Najam-ul-Haq, M. (2017). Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Analytical and Bioanalytical Chemistry, 409, 3135–3143.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, N., Deng, C., Shen, X. (2021). Application of Nanomaterials to Separation of Glycosylated Proteins. In: Applications of Nanomaterials in Proteomics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5816-7_4

Download citation

Publish with us

Policies and ethics

Navigation