Application of Genomics and Breeding Technologies to Increase Yield and Nutritional Qualities of Rapeseed-Mustard and Sunflower

  • Chapter
  • First Online:
Technologies in Plant Biotechnology and Breeding of Field Crops

Abstract

The oilseed crop plays a pivotal role in the agricultural economy. The main breeding objectives of the oilseed crop are to increase the yield of seeds and oil, improve the quality of the oil and meal according to its use, and develo** stable biotic and abiotic-resistant/tolerant varieties. Adding to the yield potential of varieties is a natural way to enhance the quantity of both oil and meal. The fatty acid composition determines the oil’s quality, whereas the desired fatty acid profile is determined by the oil’s consumption. Reduced erucic and eicosenoic acid content has significantly improved the quality of edible oil in rapeseed and mustard species, whereas high oleic acid and tocopherol content has been achieved in sunflower. With the advancement in genetics, genomics and availability of sequenced information of genomes, the traditional breeding is replaced by genomics-assisted breeding which will lead to the effective development of new-generation high-yielding oil genotypes. In this review, we aim to provide an overview of the various advanced approaches for genomics-assisted breeding to enhance genetic gain in yield and nutritional quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackman RG, Eaton CA, Sipos JC et al (1977) Comparison of fatty acids from high levels of erucic acid of RSO and partially hydrogenated fish oil in non-human primate species in a short-term exploratory study. Nutr Diet 25:170–185

    CAS  Google Scholar 

  • Agnihotri A, Prem D, Gupta K (2007) The chronicles of oil and meal quality improvement in rapeseed. In: Gupta SK (ed) Advances in botanical research–rapeseed breeding. Academic Press/Elsevier Ltd, San Diego, CA, pp 50–99

    Google Scholar 

  • Allchin FR (1969) Early cultivated plants in India and Pakistan. In: Ueko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 323–328

    Google Scholar 

  • Ayotte R, Harney PM, Machado VS (1987) Transfer of triazine resistance from Brassica napus to B. oleracea. I. Production of F1 hybrids through embryo rescue. Euphytica 36:615–624

    Article  Google Scholar 

  • Banga SS, Labana KS (1985) Male sterility in Indian mustard (Brassica juncea (L.) Coss). IV. Genetics of MS-4. Can J Genet Cytol 27(5):487–490

    Article  Google Scholar 

  • Baute GJ, Owens GL, Bock DG et al (2016) Genome wide genoty** by sequencing data provide a high resolution view of wild Helianthus diversity, genetic structure, and interspecies gene flow. Am J Bot 103(12):2170–2177

    Article  PubMed  Google Scholar 

  • Bevan MW, Uauy C, Wulff BB et al (2017) Genomic innovation for crop improvement. Nature 543(7645):346–354

    Article  CAS  PubMed  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK et al (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilgen BB (2016) Characterization of sunflower inbred lines with high oleic acid content by DNA markers. In: Proceedings of the 19th International Sunflower Conference ISA, Edirne, pp 662–668

    Google Scholar 

  • Cadic E, Coque M, Vear F et al (2013) Combined linkage and association map** of flowering time in Sunflower (Helianthus annuus L.). Theor Appl Genet 126(5):1337–1356

    Article  CAS  PubMed  Google Scholar 

  • Cai D, ** of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Celik I, Bodur S, Frary A et al (2016) Genome-wide SNP discovery and genetic linkage map construction in sunflower (Helianthus annuus L.) using a genoty** by sequencing (GBS) approach. Mol Breed 36(9):1–9

    Article  Google Scholar 

  • Chauhan JS, Singh NB (2004) Breeding approaches in rapeseed mustard varietal improvement. In: Singh NB, Kumar A (eds) Rapeseed-mustard research in India. National Research Center on Rapeseed-Mustard, Sewar, Bharatpur, pp 51–64

    Google Scholar 

  • Chauhan JS, Singh KH, Singh VV et al (2011) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sci 81(12):1093–1109

    Google Scholar 

  • Chen G, Geng J, Rahman M et al (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175(2):161–174

    Article  CAS  Google Scholar 

  • Davey MR, Jan M (2010) Sunflower (Helianthus annuus L.): genetic improvement using conventional and in vitro technologies. J Crop Improv 24:349–391

    Article  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF et al (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics 14(1):1–18

    Article  Google Scholar 

  • Dimitrijević A, Imerovski I, Miladinović D et al (2017) Oleic acid variation and marker-assisted detection of Pervenets mutation in high-and low-oleic sunflower cross. Crop Breed Appl Biotechnol 17(3):235–241

    Article  Google Scholar 

  • Ding XY, Xu JS, Huang H et al (2020) Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genoty** by sequencing in rapeseed (Brassica napus L.). Journal of Integrative. Agriculture 19(8):1974–1983

    CAS  Google Scholar 

  • Fenewick GR, Heaney RK, Mullin J (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    Article  Google Scholar 

  • Ferfuia C, Turi M, Vannozzi GP (2015) Variability of seed fatty acid composition to growing degree-days in high oleic acid sunflower genotypes. Helia 38(62):61–78

    Article  Google Scholar 

  • Fernández-Martínez JM, Pérez-Vich B, Velasco L, Domínguez J (2007) Breeding for speciality oil types in sunflower. Helia 30(46):75–84

    Google Scholar 

  • Fick GN, Miller JF (1997) Sunflower breeding. In: Scheiter AA (ed) Sunflower production and technology. American Society of Agronomy, Madison, WI, pp 395–440

    Google Scholar 

  • Fritsche S, Wang X, Li J et al (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front Plant Sci 3:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu F, Zhang X, Liu F et al (2020) Identification of resistance loci in Chinese and Canadian canola/rapeseed varieties against Leptosphaeria maculans based on genome-wide association studies. BMC Genomics 21(1):1–11

    Article  Google Scholar 

  • Gupta SK (2016) Brassicas in breeding oilseed crops for sustainable production. Elsevier Inc, Amsterdam

    Google Scholar 

  • Hasan M, Friedt W, Pons-Kühnemann J et al (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116(8):1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Hladni N, Zorić M, Terzić S et al (2018) Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 214(7):1–19

    Article  CAS  Google Scholar 

  • Honsdorf N, Becker HC, Ecke W (2010) Association map** for phenological, morphological, and quality traits in canola quality winter rapeseed (Brassica napus L.). Genome 53(11):899–907

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Huang T, Hou GZ et al (2016) Identification of QTLs for seed quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica 210(1):1–16

    Article  CAS  Google Scholar 

  • Iocca AFS, Dalchiavon FC, Malacarne BJ et al (2016) Content and oil productivity in sunflower genotypes produced in campo novo do parecis – Mt, Brazil. In: 19th International Sunflower Conference, Edirne, Turkey, pp 1136–1141

    Google Scholar 

  • Jagannath A, Bandhopadhyay P, Arumugam N et al (2001) The use of a spacer DNA fragment insulates the tissue specific expression of a cytotoxic gene (barnase) and allows high frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8:11–23

    Article  CAS  Google Scholar 

  • Kirti PB, Narasimhulu SB, Mohapatra T et al (1993) Correction of chlorophyll deficiency in aloplasmic male sterile Brassica juncea through recombination between chloroplast genomes. Genet Res 62:11–14

    Article  CAS  Google Scholar 

  • Kirti PB, Banga SS, Prakash S et al (1995) Transfer of Ogu cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion. Theor Appl Genet 91(3):517–521

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:563

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolkman JM, Berry ST, Leon AJ et al (2007) Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 177(1):457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Chauhan JS (2005) Status and future thrust areas of rapeseed-mustard Research in India. Indian J Agric Sci 75:621–635

    Google Scholar 

  • Leclercq P (1969) Une sterilité male chez le tournesol. Ann Amélior des Plantes 19:99–106

    Google Scholar 

  • Lee CJ, Li G, Duncan RW (2016) Characterization of Brassica napus L. genotypes utilizing sequence-related amplified polymorphism and genoty** by sequencing in association with cluster analysis. Mol Breed 36(11):1–13

    Google Scholar 

  • Li F, Chen B, Xu K et al (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21(4):355–367

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Shi J, Wang X et al (2014b) A combined linkage and regional association map** validation and fine map** of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14(1):1–14

    Article  Google Scholar 

  • Liu L, Qu C, Wittkop B et al (2013) A high-density SNP map for accurate map** of seed fibre QTL in Brassica napus L. PLoS One 8(12):e83052

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma GJ, Markell SG, Song QJ et al (2017) Genoty**-by-sequencing targeting of a novel downy mildew resistance gene Pl 20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.). Theor Appl Genet 130(7):1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Ma GJ, Song QJ, Markell SG et al (2018) High-throughput genoty**-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15, in sunflower (Helianthus annuus L.). Theor Appl Genet 131(7):1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Mandel JR, Nambeesan S, Bowers JE et al (2013) Association map** and the genomic consequences of selection in sunflower. PLoS Genet 9(3):e1003378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangin B, Bonnafous F, Blanchet N et al (2017) Genomic prediction of sunflower hybrids oil content. Front Plant Sci 8:1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason AS, Higgins EE, Snowdon RJ et al (2017) A user guide to the Brassica 60K Illumina Infinium™ SNP genoty** array. Theor Appl Genet 130:621–633

    Article  CAS  PubMed  Google Scholar 

  • Miller JF, Seiler GJ, Jan CC (1992) Introduced germplasm use in sunflower inbred and hybrid development. In: Use of plant introductions in cultivar development, part 2. Crop Science Society of America, Madison, WI, pp 151–156

    Google Scholar 

  • Mondon A, Owens GL, Poverene M et al (2018) Gene flow in Argentinian sunflowers as revealed by genoty**-by-sequencing data. Evol Appl 11(2):193–204

    Article  CAS  PubMed  Google Scholar 

  • Morinaga T (1934) On the chromosome number of Brassica juncea and B. napus, on the hybrid between the two, and on offspring line of the hybrid. Jpn J Genet 9(3):161–163

    Article  Google Scholar 

  • Nambeesan SU, Mandel JR, Bowers JE et al (2015) Association map** in sunflower (Helianthus annuus L.) reveals independent control of apical vs. basal branching. BMC Plant Biol 15(1):1–12

    Article  CAS  Google Scholar 

  • NRCRM (2000) Rapeseed-mustard varieties of India. NRCRM, Bharatpur. 115 p, V

    Google Scholar 

  • NRCRM (2007) Perspective plan. Vision 2025. National Research Centre on Rapeseed-Mustard, Bharatpur, pp 1–46

    Google Scholar 

  • Perez-de-Castro MA, Vilanova S, Cañizares J et al (2012) Application of genomic tools in plant breeding. Curr Genom 13(3):179–195

    Article  CAS  Google Scholar 

  • Pérez-Vich B, Knapp SJ, Leon AJ et al (2004) Map** minor QTL for increased stearic acid content in sunflower seed oil. Mol Breed 13(4):313–322

    Article  Google Scholar 

  • Pham LJ, Pham PJ (2012) Biocatalyzed production of structured olive oil triacylglycerols. In: Olive oil-constituents, quality, health properties and bioconversion. InTech, Rijeka, pp 447–456

    Google Scholar 

  • Premnath A, Narayana M, Ramakrishnan C et al (2016) Map** quantitative trait loci controlling oil content, oleic acid and linoleic acid content in sunflower (Helianthus annuus L.). Mol Breed 36(7):106

    Article  Google Scholar 

  • Pushpa HD, Yadava DK, Singh N et al (2015) Validation of molecular markers linked to low glucosinolate QTLs for marker assisted selection in Indian mustard (Brassica juncea L. Czern & Coss). Ind J Genet Plant Breed 76:64

    Article  Google Scholar 

  • Putnam DH, Oplinger ES, Hicks DR et al (1990) Sunflower. Field crops manual. University of Wisconsin Extension Program

    Google Scholar 

  • Putt ED (1997) Early history of sunflower: sunflower technology production. In: Agronomy monograph. American Society of Agronomy : Crop Science Society of America, Madison, WI, p 35

    Google Scholar 

  • Qiu F, Li Y, Yang D et al (2011) Heterogeneous solid base nanocatalyst: preparation, characterization and application in biodiesel production. Bioresour Technol 102:4150–4156

    Article  CAS  PubMed  Google Scholar 

  • Rauf S, Warburton M, Naeem A et al (2020) Validated markers for sunflower (Helianthus annuus L.) breeding. OCL 27:47

    Article  CAS  Google Scholar 

  • Rawat DS, Anand IJ (1979) Male sterility in Indian mustard. Ind J Genet Plant Breed 39:412–415

    Google Scholar 

  • Sacristan ND, Gerdemann M (1986) Different behavior of Brassica juncea and B. carinata as sources of interspecific transfer to B. napus. Plant Breed 97:304–314

    Article  Google Scholar 

  • Saini N, Singh N, Kumar A et al (2016) Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection. Breed Sci 66:831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savadi S, Lambani N, Kashyap PL et al (2017) Genetic engineering approaches to enhance oil content in oilseed crops. Plant Growth Regul 83(2):207–222

    Article  CAS  Google Scholar 

  • Seiler G (2010) Utilization of wild Helianthus species in breeding for disease resistance. In: International Symposium “Sunflower Breeding on Resistance to Diseases”; Krasnodar, Russia, pp 37–51

    Google Scholar 

  • Seiler GJ, Jan CC (2014) Wild sunflower species as a genetic resource for resistance to sunflower broomrape (Orobanche cumana Wallr.). Helia 37(61):129–139

    Article  Google Scholar 

  • Singh D, Mehta TR (1954) Studies in breeding of brown sarson I. comparison of F1’s and theirs parents. Ind J Genet Plant Breed 14:74–77

    Google Scholar 

  • Singh S, Mohapatra T, Singh R et al (2013) Map** of QTLs for oil content and fatty acid composition in Indian mustard [Brassica juncea (L.) Czern. and Coss.]. J Plant Biochem Biotechnol 22(1):80–89

    Article  CAS  Google Scholar 

  • Škoric D (2012) The genetics of sunflower. In: Kovacevic Z, Škorić D, Sakac Z (eds) Sunflower genetics and breeding-international monogram. Serbian Academy of Sciences, Serbia, pp 1–125

    Google Scholar 

  • Skoric D, Jocic S, Sakac Z, Lecic N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can J Physiol Pharmacol 86(4):215–221

    CAS  PubMed  Google Scholar 

  • Soldatov KI (1976) Chemical mutagenesis in sunflower breeding. In: Proceedings of the 7th International Sunflower Conference. International Sunflower Association, Krasnodar, pp 352–357

    Google Scholar 

  • Sorkheh K, Malysheva-Otto LV, Wirthensohn MG et al (2008) Linkage disequilibrium, genetic association map** and gene localization in crop plants. Genet Mol Biol 31(4):805–814

    Article  Google Scholar 

  • Sujatha M, Prabakaran AJ, Dwivedi SL et al (2008) Cytomorphological and molecular diversity in backcross-derived inbred lines of sunflower (Helianthus annuus L.). Genome 51(4):282–293

    Article  CAS  PubMed  Google Scholar 

  • Talukder ZI, Gong L, Hulke BS et al (2014) A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-map** of the rust resistance gene R 12. PLoS One 9(7):e98628

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang SJYK, Yu JK, Slabaugh MB et al (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105(8):1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Thurling N (1993) Physiological constraints and their genetic manipulation. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed brassicas. Springer, Berlin, pp 44–68

    Chapter  Google Scholar 

  • Varanceanu AV, Stoenescu FM (1982) Achievements and prospects of sunflower genetics, breeding and induced mutation utilization. In: Improvement of Oilseed and Industrial Crops by Induced Mutations. IAEA, Vienna, pp. 81–87

    Google Scholar 

  • Vavilov NI (1949) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–364

    Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2000) Inheritance of oleic acid content under controlled environment. In: Proceedings of the 15th International Sunflower Conference, vol 1. International Sunflower Association, Toulouse, pp A31–A36

    Google Scholar 

  • Velasco L, Perez-Vich B, Fernandez-Martinez JM (2004) Development of sunflower germplasm with high delta-tocopherol content. Helia 27(40):99–106

    Article  Google Scholar 

  • Vera-Ruiz EM, Pérez-Vich B, Fernández-Martínez JM et al (2005) Comparative genetic study of two sources of beta-tocopherol in sunflower. Helia 28(42):1–8

    Article  Google Scholar 

  • Verma OP, Singh HP, Singh PV (1998) Heterosis and inbreeding depression in Indian mustard. Cruciferae Newsl 20:75–76

    Google Scholar 

  • Wang X, Wang H, Long Y et al (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS One 8(12):e80569

    Article  PubMed  PubMed Central  Google Scholar 

  • Würschum T, Abel S, Zhao Y (2014) Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breed 133(1):45–51

    Article  Google Scholar 

  • Xu Y, Liu X, Fu J et al (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1(1):100005

    Article  PubMed  Google Scholar 

  • Yadava DK, Vasudev S, Singh N et al (2012) Breeding major oil crops: present status and future research needs. In: Gupta SK (ed) Technological innovations in major world oil crops, vol 1: breeding. Springer Science and Business Media, New York, NY, pp 17–51

    Chapter  Google Scholar 

  • Yang Q, Fan C, Guo Z et al (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Yu K, Cai S et al (2020) Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J 18(5):1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Zhang DQ, Tang GX et al (2006) Plant development from microspore-derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biol Plantarum 50:180–186

    Article  Google Scholar 

  • Zhou F, Liu Y, Liang C et al (2018) Construction of a high-density genetic linkage map and QTL map** of oleic acid content and three agronomic traits in sunflower (Helianthus annuus L.) using specific-locus amplified fragment sequencing (SLAF-seq). Breed Sci 68:596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V.K., Bhoyar, P.I., Anu, Sharma, V. (2022). Application of Genomics and Breeding Technologies to Increase Yield and Nutritional Qualities of Rapeseed-Mustard and Sunflower. In: Kamaluddin, Kiran, U., Abdin, M.Z. (eds) Technologies in Plant Biotechnology and Breeding of Field Crops. Springer, Singapore. https://doi.org/10.1007/978-981-16-5767-2_6

Download citation

Publish with us

Policies and ethics

Navigation