Microbial Abundance and Strategies of Adaptation in Various Extreme Environments

  • Chapter
  • First Online:
Microbes in Microbial Communities

Abstract

Microbes are versatile community of universe and able to survive at diverse conditions or niches such as deep sea vent, volcanic areas, Polar Regions, core of earth, etc. are the region where microbes can live and reproduce easily by their extremophilic adaptive nature. The adaptation and survival are basically governed by the morpho-phenotypic, biochemical, genetic, and enzymatic secretion strategies. Microbes survive in extreme condition possess a unique feature like thermostability, resistant against chemical denaturants and stability in extreme acidic or alkaline condition. Researchers, who work on the molecular biology isolated many important genes from extremophiles helpful in the industry like paper industry, dairy industry, and in food processing industry. In addition, extremophiles also produce biologically active enzymes like starch, cellulose, chitin, and protein degrading enzymes. The details of morphology to molecular survival strategies are included in this chapter with extremophile approaches to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez L, Bricio C, Blesa A, Hidalgo A, Berenguer J (2014) Transferable denitrification capability of Thermus thermophilus. Appl Environ Microbiol 80(1):19–28

    PubMed  PubMed Central  Google Scholar 

  • Antranikian G (2001) Extremophiles as a source of unique enzymes for biotechnological applications. In: Proceedings of the Microbiological Society of Korea Conference. The Microbiological Society of Korea, Seoul, pp 39–45

    Google Scholar 

  • Aslam M, Horiuchi A, Simons JR, Jha S, Yamada M, Odani T, Atomi H (2017) Engineering of the hyperthermophilic archaeon Thermococcus kodakarensis for chitin-dependent hydrogen production. Appl Environ Microbiol 83(15):e00280–e00217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atomi H, Reeve J (2019) Microbe profile: Thermococcus kodakarensis: the model hyperthermophilic archaeon. Microbiology 165(11):11–66

    Google Scholar 

  • Bartlett DH, Eloe EA, Lauro FM (2007) Microbial adaptation to high pressure. In: Charles G, Nicolas G (eds) Physiology and biochemistry of extremophiles. American Society of Microbiology, Washington, DC, pp 333–348. https://doi.org/10.1128/9781555815813.ch25

    Chapter  Google Scholar 

  • Birien T, Thiel A, Henneke G, Flament D, Moalic Y, Jebbar M (2018) Development of an effective 6-methylpurine counterselection marker for genetic manipulation in Thermococcus barophilus. Genes 9(2):77

    PubMed Central  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1988) Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415 C: a refined determination of the critical point and two-phase boundary of seawater. Geochim Cosmochim Acta 52(8):2121–2126

    CAS  Google Scholar 

  • Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotogamaritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61(4):1399–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canganella F, Andrade CM, Antranikian G (1994) Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species. Appl Microbiol Biotechnol 42(2):239–245

    CAS  Google Scholar 

  • Cárdenas JP, Quatrini-Nyqvist RC, Holmes DS (2016) Progress in acidophile genomics

    Google Scholar 

  • Chan Y, Lacap DC, Lau MC, Ha KY, Warren-Rhodes KA, Cockell CS, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14(9):2272–2282

    PubMed  Google Scholar 

  • Chen GQ, Jiang XR (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100

    CAS  PubMed  Google Scholar 

  • Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127(3):1550–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, Dopson M (2018) Multi-omics reveals the lifestyle of the acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum T. Appl Environ Microbiol 84(3):e02091–e02017

    PubMed  PubMed Central  Google Scholar 

  • Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T (1995) Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 61(4):1502–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke A, Morris GJ, Fonseca F, Murray BJ, Acton E, Price HC (2013) A low temperature limit for life on Earth. PLoS One 8(6):e66207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coker JA (2019) Recent advances in understanding extremophiles. F1000 Res 8:F1000 Faculty Rev-1917

    Google Scholar 

  • Coker JA, DasSarma P, Capes M, Wallace T, McGarrity K, Gessler R, DasSarma S (2009) Multiple replication origins of Halobacterium sp strain NRC-1: properties of the conserved orc7-dependent oriC1. J Bacteriol 191(16):5253–5261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan DA, Smolenski KA, Daniel RM, Morgan HW (1987) An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 C. Biochem J 247(1):121–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czop M, Motyka J, Sracek O, SzuwarzyÅ„ski M (2011) Geochemistry of the hyperalkaline Gorka pit lake (pH > 13) in the Chrzanow region, southern Poland. Water Air Soil Pollut 214(1):423–434

    CAS  Google Scholar 

  • Dalmasso C, Oger P, Selva G, Courtine D, L’Haridon S, Garlaschelli A, Roussel E, Miyazaki J, Reveillaud J, Jebbar M, Takai K, Maignien L, Alain K (2016) Thermococcus piezophilus sp. nov. a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. Syst Appl Microbiol 39(7):440–444. https://doi.org/10.1016/j.syapm.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  • Deming JW (2007) Life in ice formations at very cold temperatures. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 133–145

    Google Scholar 

  • DeVeaux LC, Müller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilicarchaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168(4):507–514

    CAS  PubMed  Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8(6):649–655

    CAS  PubMed  Google Scholar 

  • Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Tittor J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res 15(10):1336–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22(32):323101

    PubMed  Google Scholar 

  • Figueiredo AS, Kouril T, Esser D, Haferkamp P, Wieloch P, Schomburg D, Schaber J (2017) Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobuss olfataricus. PLoS One 12(7):e0180331

    PubMed  PubMed Central  Google Scholar 

  • Fujiwara S, Okuyama S, Imanaka T (1996) The world of archaea: genome analysis, evolution and thermostable enzymes. Gene 179(1):165–170

    CAS  PubMed  Google Scholar 

  • Fusek M, Lin XL, Tang J (1990) Enzymic properties of thermopsin. J Biol Chem 265(3):1496–1501

    CAS  PubMed  Google Scholar 

  • Fusi P, Villa M, Burlini N, Tortora P, Guerritore A (1991) Intracellular proteases from the extremely thermophilic archaebacterium Sulfolobussolfataricus. Experientia 47(10):1057–1060

    CAS  Google Scholar 

  • Gibbs MD, Reeves RA, Bergquist PL (1995) Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B 1 and activity of the enzyme on fiber-bound substrate. Appl Environ Microbiol 61(12):4403–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, de Lima AF, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9(3):801–813

    CAS  PubMed  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74(1):121–156. https://doi.org/10.1128/MMBR.00016-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber R, Stöhr J, Hohenhaus S, Rachel R, Burggraf S, Jannasch HW, Stetter KO (1995) Thermococcus chitonophagus sp nov, a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164(4):255–264

    Google Scholar 

  • Irwin JA (2010) Extremophiles and their application to veterinary medicine. Environ Technol 31(8–9):857–869

    CAS  PubMed  Google Scholar 

  • Karaman K, Sagdic O (2019) Zygosaccharomyces bailii and Z rouxii induced ethanol formation in apple juice supplemented with different natural preservatives: a response surface methodology approach. J Microbiol Methods 163:105–659

    Google Scholar 

  • Kashefi K (2003) Extending the upper temperature limit for life. Science 301(5635):934–934. https://doi.org/10.1126/science.1086823

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1(3):117–123

    CAS  PubMed  Google Scholar 

  • Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11(10):1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikani BA, Singh SP (2012) The stability and thermodynamic parameters of a very thermostable and calcium-independent α-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-.1. Process Biochem 47(12):1791–1798

    CAS  Google Scholar 

  • Koch R, Canganella F, Hippe H, Jahnke KD, Antranikian G (1997) Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium, Fervidobacterium pennavorans Ven5. Appl Environ Microbiol 63(3):1088–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koschinsky A, Garbe-Schönberg D, Sander S, Schmidt K, Gennerich HH, Strauss H (2008) Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5 S on the Mid-Atlantic Ridge. Geology 36(8):615–618

    CAS  Google Scholar 

  • Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans Cold Spring. Harbor Perspect Biol 5(7):a012765

    Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9(5):330–343. https://doi.org/10.1038/nrmicro2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushner DJ (2020) Growth and nutrition of halophilic bacteria. In: The biology of halophilic bacteria. CRC Press, Boca Raton, FL, pp 87–103

    Google Scholar 

  • Kusube M, Kyaw TS, Tanikawa K, Chastain RA Hardy KM, Cameron J, Bartlett DH (2017) Colwelliamarinimaniae sp nov, a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol 67(4):824–831

    Google Scholar 

  • Lane N, Martin WF (2012) The origin of membrane bioenergetics. Cell 151(7):1406–1416. https://doi.org/10.1016/j.cell.2012.11.050

    Article  CAS  PubMed  Google Scholar 

  • Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32(4):271–280. https://doi.org/10.1002/bies.200900131

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Williams TJ, Walsh JC, Ji M, Poljak A, Curmi PMG, Cavicchioli R (2016) Develo** a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: investigating acetamidase gene function. Sci Rep 6(1):1–15

    Google Scholar 

  • Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge JA, Mathur EJ (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1):1–6

    CAS  PubMed  Google Scholar 

  • Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, Meyerdierks A (2017) Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J 11(7):1545–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mirete S, Morgante V, González-Pastor JE (2017) Acidophiles: diversity and mechanisms of adaptation to acidic environments. In: Adaption of microbial life to environmental extremes. Springer, Cham, pp 227–251

    Google Scholar 

  • Mocali S, Chiellini C, Fabiani A, Decuzzi S, de Pascale D, Parrilli E, Fani R (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7(1):1–13

    CAS  Google Scholar 

  • Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68(23):4915–4933. https://doi.org/10.1016/j.gca.2004.05.037

    Article  CAS  Google Scholar 

  • Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at −15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51(6):711–729

    CAS  PubMed  Google Scholar 

  • Oger P, Sokolova TG, Kozhevnikova DA, Taranov EA, Vannier P, Lee HS, Lebedinsky AV (2016) Complete genome sequence of the hyperthermophilic and piezophilicarchaeon Thermococcus barophilus Ch5, capable of growth at the expense of hydrogenogenesis from carbon monoxide and formate. Genome Announce 4(1):e01534

    Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58(1):27–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onofri A, Benincasa P, Mesgaran MB, Ritz C (2018) Hydrothermal-time-to-event models for seed germination. Eur J Agron 101:129–139. https://doi.org/10.1016/j.eja.2018.08.011

    Article  Google Scholar 

  • Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M (2018) Living at the frontiers of life: extremophiles in chile and their potential for bioremediation. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02309

  • Oren A (1983) Halobacterium sodomense sp nov, a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Evol Microbiol 33(2):381–386

    Google Scholar 

  • Oren A (2013) Two centuries of microbiological research in the Wadi Natrun, Egypt: a model system for the study of the ecology, physiology, and taxonomy of haloalkaliphilic microorganisms. In: Polyextremophiles. Springer, Dordrecht, pp 101–119

    Google Scholar 

  • Parrilli E, Tedesco P, Fondi M, Tutino ML, Giudice AL, de Pascale D, Fani R (2019) The art of adapting to extreme environments: the model system Pseudoalteromonas. Phys Life Rev 36:137

    PubMed  Google Scholar 

  • Pedersen S, Dijkhuizen L, Dijkstra BW, Jensen BF, Jorgensen ST (1995) A better enzyme for cyclodextrins. ChemTech 25(12):19–25

    CAS  Google Scholar 

  • Plümper O, King HE, Geisler T, Liu Y, Pabst S, Savov IP, Rost D, Zack T (2017) Subduction zone forearc serpentinites as incubators for deep microbial life. Proc Natl Acad Sci 114(17):4324–4329. https://doi.org/10.1073/pnas.1612147114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O (2017) Sulfolobus–a potential key organism in future biotechnology. Front Microbiol 8:2474

    PubMed  PubMed Central  Google Scholar 

  • Rai AR, Singh RP, Srivastava AK, Dubey RC (2012) Structure prediction and evolution of a halo-acid dehalogenase of Burkholderia mallei. Bioinformatics 8(22):1111–1113

    Google Scholar 

  • Sahuquillo-Arce JM, Chouman-Arcas R, Molina-Moreno JM, Hernández-Cabezas A, Frasquet-Artés J, López-Hontangas JL (2017) Capnophilic Enterobacteriaceae. Diagn Microbiol Infect Dis 87(4):318–319

    CAS  PubMed  Google Scholar 

  • Sayed AM, Hassan MH, Alhadrami HA, Hassan HM, Goodfellow M, Rateb ME (2020) Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 128(3):630–657

    CAS  PubMed  Google Scholar 

  • Scambos TA, Campbell GG, Pope A, Haran T, Muto A, Lazzara M, Reijmer CH, Broeke MR (2018) Ultralow surface temperatures in East Antarctica from satellite thermal infrared map**: the coldest places on earth. Geophys Res Lett 45(12):6124–6133. https://doi.org/10.1029/2018GL078133

    Article  Google Scholar 

  • Schleper C, Piihler G, Kuhlmorgen B, Zillig W (1995a) Life at extremely low pH. Nature 375(6534):741–742

    CAS  PubMed  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius UTE, Zillig W (1995b) Picrophilus gen nov, fam nov: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177(24):7050–7059

    Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00209

  • Singh OV (2012) Extremophiles: sustainable resources and biotechnological implications. John Wiley & Sons, New York, NY

    Google Scholar 

  • Singh RP, Singh RN, Srivastava AK, Kumar S, Dubey RC et al (2011) Structural analysis and 3D-modelling of fur protein from Bradyrhizobium japonicum. J Appl Sci Environ Sanit 6(3):357–366

    CAS  Google Scholar 

  • Singh RP, Singh RN, Srivastava MK, Srivastava AK, Kumar S, Dubey RC, Sharma AK (2012) Structure prediction and analysis of MxaF from obligate, facultative and restricted facultative methylobacterium. Bioinformation 8(21):1042–1046. https://doi.org/10.6026/97320630081042

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains. J Basic Microbiol 56:14–25. https://doi.org/10.1002/jobm.201500267

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Manchanda G, Yang Y, Singh D, Srivastava AK, Dubey RC, Zhang C (2019) Deciphering the factors for nodulation and symbiosis of Mesorhizobium associated with Cicer arietinum in Northwest India. Sustainability 11(24):7216. https://doi.org/10.3390/su11247216

    Article  CAS  Google Scholar 

  • Singh R, Manchanda G, Maurya I, Wei Y (eds) (2020a) Microbial versatility in varied environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-3028-9

    Book  Google Scholar 

  • Singh RP, Buttar HK, Kaur R, Manchanda G (2020b) The multifaceted life of microbes: survival in varied environments. In: Singh R, Manchanda G, Maurya I, Wei Y (eds) Microbial versatility in varied environments. Springer, Singapore. https://doi.org/10.1007/978-981-15-3028-9-1

    Chapter  Google Scholar 

  • Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW, Perler FB (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp 9 degrees N-7 and mutations affecting 3’-5’exonuclease activity. Proc Natl Acad Sci 93(11):5281–5285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subhashini DV, Singh RP, Manchanda G (2017) OMICS approaches: tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research, New Delhi. ISBN: 9788171641703. https://books.google.co.in/books?id=vSaLtAEACAAJ

    Google Scholar 

  • Suyal DC, Soni R, Yadav AN, Goel R (2021) Cold adapted microorganisms: survival mechanisms and applications. In: Microbiomes of extreme environments. CRC Press, Boca Raton, FL, pp 177–191

    Google Scholar 

  • Tachibana Y, Leclere MM, Fujiwara S, Takag M, Imanaka T (1996) Cloning and expression of the α-Amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD 1, and characterization of the enzyme. J Ferment Bioeng 82:224–232

    CAS  Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001) Alkaliphilus transvaalensis gen nov, sp nov, an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51(4):1245–1256

    Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J et al (2008) Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci 105(31):10949–10954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayanagi T, Ajisaka K, Takiguchi Y, Shimahara K (1991) Isolation and characterization of thermostablechitinases from Bacillus licheniformis X-7u. Biochim Biophys Acta Prot Struct Mol Enzymol 1078(3):404–410

    CAS  Google Scholar 

  • Te’o VSJ, Saul DJ, Bergquist PL (1995) cel A, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43(2):291–296

    PubMed  Google Scholar 

  • Tsujibo H, Endo H, Miyamoto K, Inamori Y (1995) Expression in Escherichia coli of a gene encoding a thermostablechitinase from Streptomyces thermoviolaceus OPC-520. Biosci Biotechnol Biochem 59(1):145–146

    CAS  PubMed  Google Scholar 

  • Ueki A, Kaku N, Ueki K (2018) Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Appl Microbiol Biotechnol 102(15):6309–6318

    CAS  PubMed  Google Scholar 

  • Van Der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, Party BS (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307(5706):121–123

    PubMed  Google Scholar 

  • Van-Thuoc D, Hashim SO, Hatti-Kaul R, Mamo G (2013) Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus haloduransxylanase as a model. Appl Microbiol Biotechnol 97(14):6271–6278

    CAS  PubMed  Google Scholar 

  • Wierzchos J, Cámara B, de Los RA, Davila AF, Sánchez Almazo IM, Artieda O, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9(1):44–60

    CAS  PubMed  Google Scholar 

  • Wind RD, Liebl W, Buitelaar RM, Penninga D, Spreinat A, Dijkhuizen L, Bahl H (1995) Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextringlycosyltransferase. Appl Environ Microbiol 61(4):1257–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotogamaritima MSB8. Appl Environ Microbiol 61(5):1810–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Birrien JL, Fouquet Y, Cherkashkov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, **ao X, Preur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. Int Soc Microb Ecol J 3(7):873–876

    Google Scholar 

  • Zhang J, Yang X, Guo C, de Lajudie P, Singh RP, Wang E, Chen W (2017) Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China. Plant Soil 410(1–2):103–112

    Google Scholar 

  • Zhou Y, Shen P, Lan Q, Deng C, Zhang Y, Li Y, Xu P (2017) High-coverage proteomics reveals methionine auxotrophy in Deinococcus radiodurans. Proteomics 17(13–14):1700072

    Google Scholar 

  • Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144(2):457–465

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra, P., Singh, D., Srivastava, A.K. (2021). Microbial Abundance and Strategies of Adaptation in Various Extreme Environments. In: Singh, R.P., Manchanda, G., Bhattacharjee, K., Panosyan, H. (eds) Microbes in Microbial Communities. Springer, Singapore. https://doi.org/10.1007/978-981-16-5617-0_5

Download citation

Publish with us

Policies and ethics

Navigation