High-Density Fiberless Optoelectrodes with Integrated Waveguides and μLEDs

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

The study of a localcuit inside the brain requires a tool to precisely modulate a few selected neurons and simultaneously monitor the neuronal responses. Optogenetics provides the capability to excite or inhibit activities of specific neurons in intact animals with millisecond precision. This light-induced stimulation technique can be combined with electrophysiology to enable simultaneous control of target neurons and recording of the associated neuronal activities in the brain. In this chapter, we introduce the state-of-the-art optoelectrodes that enable precise optical stimulation and electrical recording in behaving animals. For experiments with behaving animals, it is important that the light sources are integrated within the headstage so that light can be delivered to multiple stimulation sites without causing a tethering problem. Two fiberless implementation approaches that promote easier scaling are discussed in detail: the integration of optical waveguides on the probe shank for light delivery to a distal end located near the recording electrodes and the direct integration of neuron-sized (∼ 10 μm) microLEDs in the vicinity of the recording electrodes. The design principles and the fabrication processes, as well as the advantages and the limitations of each approach, will be presented along with the results of in vivo validation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

ALD:

Atomic layer deposition

Arch:

Archaerhodopsin(-3)

CaMKII:

Calcium/calmodulin-dependent protein kinase II

ChR2:

Channelrhodopsin-2

DPSS:

Diode-dumped solid state

DRIE:

Deep reactive-ion etching

EEG:

Electroencephalogram

EMI:

Electromagnetic interference

GRIN:

Gradient-index lens

HFO:

High-frequency oscillation

IC:

Integrated circuit

ILD:

Injection laser diode

INT:

Interneuron

IQE:

Internal quantum efficiency

LED:

Light-emitting diode

LFP:

Local field potential

LPCVD:

Low-pressure chemical vapor deposition

MEMS:

Microelectromechanical system

MQW:

Multi-quantum well

NpHR:

Halorhodopsin

PCB:

Printed circuit board

PECVD:

Plasma-enhanced chemical vapor deposition

PV:

Parvalbumin (positive interneuron)

PYR:

Pyramidal (neuron)

RI:

Refractive index

RIE:

Reactive-ion etching

SEM:

Scanning electron microscope

SOI:

Silicon on insulator

SWR:

Sharp wave-ripple

References

  1. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Jacob Filho, W., Lent, R., Herculano-Houzel, S.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513(5), 532–541 (2009). https://doi.org/10.1002/cne.21974

    Article  Google Scholar 

  2. Krioukov, D., Kitsak, M., Sinkovits, R.S., Rideout, D., Meyer, D., Boguna, M.: Network cosmology. Sci. Rep. 2, 793 (2012). https://doi.org/10.1038/srep00793

    Article  Google Scholar 

  3. Frackowiak, R.S.J.: Human Brain Function, 2nd edn. Elsevier Academic Press, Amsterdam/Boston (2004)

    Google Scholar 

  4. Lin, L., Chen, G., **e, K., Zaia, K.A., Zhang, S., Tsien, J.Z.: Large-scale neural ensemble recording in the brains of freely behaving mice. J. Neurosci. Methods. 155(1), 28–38 (2006). https://doi.org/10.1016/j.jneumeth.2005.12.032

    Article  Google Scholar 

  5. Buzsaki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004). https://doi.org/10.1038/nn1233

    Article  Google Scholar 

  6. Goebel, R.: Localization of brain activity using functional magnetic resonance imaging. Med. Radiol. Diagn. Imaging, 9–51 (2007). https://doi.org/10.1007/978-3-540-49976-3_2

  7. Pradhan, T., Jung, H.S., Jang, J.H., Kim, T.W., Kang, C., Kim, J.S.: Chemical sensing of neurotransmitters. Chem. Soc. Rev. 43(13), 4684–4713 (2014). https://doi.org/10.1039/c3cs60477b

    Article  Google Scholar 

  8. Sinha, S.R., Saggau, P.: Simultaneous optical recording of membrane potential and intracellular calcium from brain slices. Methods. 18(2), 204 (1999). https://doi.org/10.1006/meth.1999.0773

    Article  Google Scholar 

  9. Perron, A., Akemann, W., Mutoh, H., Knopfel, T.: Genetically encoded probes for optical imaging of brain electrical activity. Prog. Brain Res. 196, 63–77 (2012). https://doi.org/10.1016/B978-0-444-59426-6.00004-5

    Article  Google Scholar 

  10. Hoogerwerf, A.C., Wise, K.D.: A three-dimensional neural recording array. In: TRANSDUCERS ‘91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, 24–27 June 1991, pp. 120–123 (1991). https://doi.org/10.1109/SENSOR.1991.148816

  11. Kim, S., Bhandari, R., Klein, M., Negi, S., Rieth, L., Tathireddy, P., Toepper, M., Oppermann, H., Solzbacher, F.: Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices. 11(2), 453–466 (2009). https://doi.org/10.1007/s10544-008-9251-y

    Article  Google Scholar 

  12. Olejniczak, P.: Neurophysiologic basis of EEG. J. Clin. Neurophysiol. 23(3), 186–189 (2006). https://doi.org/10.1097/01.wnp.0000220079.61973.6c

    Article  Google Scholar 

  13. Buzsaki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012). https://doi.org/10.1038/nrn3241

    Article  Google Scholar 

  14. Kodandaramaiah, S.B., Franzesi, G.T., Chow, B.Y., Boyden, E.S., Forest, C.R.: Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat. Methods. 9(6), 585–587 (2012). https://doi.org/10.1038/nmeth.1993

    Article  Google Scholar 

  15. Butovas, S., Schwarz, C.: Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. J. Neurophysiol. 90(5), 3024–3039 (2003). https://doi.org/10.1152/jn.00245.2003

    Article  Google Scholar 

  16. Barker, A.T., Jalinous, R., Freeston, I.L.: Non-invasive magnetic stimulation of human motor cortex. Lancet. 325(8437), 1106–1107 (1985). https://doi.org/10.1016/S0140-6736(85)92413-4

    Article  Google Scholar 

  17. Krnjević, K.: Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54(2), 418–540 (1974). https://doi.org/10.1152/physrev.1974.54.2.418

    Article  Google Scholar 

  18. Nakayama, T., Hammel, H.T., Hardy, J.D., Eisenman, J.S.: Thermal stimulation of electrical activity of single units of the preoptic region. Am. J. Physiol.-Legacy Content. 204(6), 1122–1126 (1963). https://doi.org/10.1152/ajplegacy.1963.204.6.1122

    Article  Google Scholar 

  19. Harvey, E.N.: The effect of high frequency sound waves on heart muscle and other irritable tissues. Am. J. Physiol.-Legacy Content. 91(1), 284–290 (1929). https://doi.org/10.1152/ajplegacy.1929.91.1.284

    Article  Google Scholar 

  20. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8(9), 1263–1268 (2005). https://doi.org/10.1038/nn1525

    Article  Google Scholar 

  21. Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S., Roth, B.L.: Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. 104(12), 5163 (2007). https://doi.org/10.1073/pnas.0700293104

    Article  Google Scholar 

  22. Bernstein, J.G., Boyden, E.S.: Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn. Sci. 15(12), 592–600 (2011). https://doi.org/10.1016/j.tics.2011.10.003

    Article  Google Scholar 

  23. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., Deisseroth, K.: Optogenetics in neural systems. Neuron. 71(1), 9–34 (2011). https://doi.org/10.1016/j.neuron.2011.06.004

    Article  Google Scholar 

  24. Pastrana, E.: Optogenetics: controlling cell function with light. Nat. Methods. 8, 24 (2010). https://doi.org/10.1038/nmeth.f.323

    Article  Google Scholar 

  25. Sohal, V.S., Zhang, F., Yizhar, O., Deisseroth, K.: Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 459(7247), 698–702 (2009). https://doi.org/10.1038/nature07991

    Article  Google Scholar 

  26. Wu, F., Stark, E., Ku, P.C., Wise, K.D., Buzsaki, G., Yoon, E.: Monolithically integrated mu LEDs on silicon neural probes for high-resolution Optogenetic studies in behaving animals. Neuron. 88(6), 1136–1148 (2015). https://doi.org/10.1016/j.neuron.2015.10.032

    Article  Google Scholar 

  27. Kampasi, K., English, D.F., Seymour, J., Stark, E., McKenzie, S., Vöröslakos, M., Buzsáki, G., Wise, K.D., Yoon, E.: Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsyst. Nanoeng. 4(1), 10 (2018). https://doi.org/10.1038/s41378-018-0009-2

    Article  Google Scholar 

  28. English, D.F., McKenzie, S., Evans, T., Kim, K., Yoon, E., Buzsáki, G.: Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. Neuron. 96(2), 505–520.e507 (2017). https://doi.org/10.1016/j.neuron.2017.09.033

    Article  Google Scholar 

  29. Strumwasser, F.: Long-term recording from single neurons in brain of unrestrained mammals. Science. 127(3296), 469–470 (1958)

    Article  Google Scholar 

  30. Gray, C.M., Maldonado, P.E., Wilson, M., McNaughton, B.: Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J. Neurosci. Methods. 63(1–2), 43–54 (1995)

    Article  Google Scholar 

  31. Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H., Buzsaki, G.: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84(1), 401–414 (2000)

    Article  Google Scholar 

  32. Blanche, T.J., Spacek, M.A., Hetke, J.F., Swindale, N.V.: Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J. Neurophysiol. 93(5), 2987–3000 (2005). https://doi.org/10.1152/jn.01023.2004

    Article  Google Scholar 

  33. Wise, K.D., Angell, J.B., Starr, A.: An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. 17(3), 238 (1970). https://doi.org/10.1109/Tbme.1970.4502738

    Article  Google Scholar 

  34. Yao, Y., Gulari, M.N., Wiler, J.A., Wise, K.D.: A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications. J. Microelectromech. Syst. 16(4), 977–988 (2007). https://doi.org/10.1109/Jmems.2007.896712

    Article  Google Scholar 

  35. Wise, K.D., Sodagar, A.M., Yao, Y., Gulari, M.N., Perlin, G.E., Najafi, K.: Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE. 96(7), 1184–1202 (2008). https://doi.org/10.1109/Jproc.2008.922564

    Article  Google Scholar 

  36. Kim, C., Wise, K.D.: A 64-site multishank CMOS low-profile neural stimulating probe. IEEE J. Solid-State Circuits. 31(9), 1230–1238 (1996). https://doi.org/10.1109/4.535406

    Article  Google Scholar 

  37. Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., Najafi, K.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE. 92(1), 76–97 (2004). https://doi.org/10.1109/Jproc.2003.820544

    Article  Google Scholar 

  38. Stevenson, I.H., Kording, K.P.: How advances in neural recording affect data analysis. Nat. Neurosci. 14(2), 139–142 (2011). https://doi.org/10.1038/nn.2731

    Article  Google Scholar 

  39. Du, J., Blanche, T.J., Harrison, R.R., Lester, H.A., Masmanidis, S.C.: Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One. 6(10), e26204 (2011). https://doi.org/10.1371/journal.pone.0026204

    Article  Google Scholar 

  40. Ruther, P., Herwik, S., Kisban, S., Seidl, K., Paul, O.: Recent progress in neural probes using silicon MEMS technology. IEEJ Trans. Electr. Electron Eng. 5(5), 505–515 (2010). https://doi.org/10.1002/tee.20566

    Article  Google Scholar 

  41. Merriam, M.E., Dehmel, S., Srivannavit, O., Shore, S.E., Wise, K.D.: A 3-D 160-site microelectrode array for cochlear nucleus map**. IEEE Trans. Biomed. Eng. 58(2), 397–403 (2011). https://doi.org/10.1109/Tbme.2010.2088122

    Article  Google Scholar 

  42. Buzsáki, G., Stark, E., Berényi, A., Khodagholy, D., Kipke Daryl, R., Yoon, E., Wise, K.D.: Tools for probing local circuits: high-density silicon probes combined with Optogenetics. Neuron. 86(1), 92–105 (2015). https://doi.org/10.1016/j.neuron.2015.01.028

    Article  Google Scholar 

  43. Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromadka, T., Mainen, Z., Svoboda, K.: Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature. 451(7174), 61–64 (2008). https://doi.org/10.1038/nature06445

    Article  Google Scholar 

  44. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., Deisseroth, K.: Temporally precise in vivo control of intracellular signalling. Nature. 458(7241), 1025–1029 (2009). https://doi.org/10.1038/nature07926

    Article  Google Scholar 

  45. Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., Moore, C.I.: Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5(2), 247–254 (2010). https://doi.org/10.1038/nprot.2009.228

    Article  Google Scholar 

  46. English, D.F., Ibanez-Sandoval, O., Stark, E., Tecuapetla, F., Buzsaki, G., Deisseroth, K., Tepper, J.M., Koos, T.: GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat. Neurosci. 15(1), 123–U155 (2012). https://doi.org/10.1038/nn.2984

    Article  Google Scholar 

  47. Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G.P., Moore, C.I.: Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat. Neurosci. 14(9), 1118–1120 (2011). https://doi.org/10.1038/nn.2880

    Article  Google Scholar 

  48. Han, X., Qian, X., Bernstein, J.G., Zhou, H.H., Franzesi, G.T., Stern, P., Bronson, R.T., Graybiel, A.M., Desimone, R., Boyden, E.S.: Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron. 62(2), 191–198 (2009). https://doi.org/10.1016/j.neuron.2009.03.011

    Article  Google Scholar 

  49. Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., Kreitzer, A.C.: Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 466(7306), 622–U627 (2010). https://doi.org/10.1038/nature09159

    Article  Google Scholar 

  50. Royer, S., Zemelman, B.V., Losonczy, A., Kim, J., Chance, F., Magee, J.C., Buzsaki, G.: Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15(5), 769–775 (2012). https://doi.org/10.1038/nn.3077

    Article  Google Scholar 

  51. Anikeeva, P., Andalman, A.S., Witten, I., Warden, M., Goshen, I., Grosenick, L., Gunaydin, L.A., Frank, L.M., Deisseroth, K.: Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15(1), 163–U204 (2012). https://doi.org/10.1038/nn.2992

    Article  Google Scholar 

  52. Gradinaru, V., Thompson, K.R., Zhang, F., Mogri, M., Kay, K., Schneider, M.B., Deisseroth, K.: Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27(52), 14231–14238 (2007). https://doi.org/10.1523/Jneurosci.3578-07.2007

    Article  Google Scholar 

  53. Hoffman, L., Welkenhuysen, M., Andrei, A., Musa, S., Luo, Z.X., Libbrecht, S., Severi, S., Soussan, P., Baekelandt, V., Haesler, S., Gielen, G., Puers, R., Braeken, D.: High-density optrode-electrode neural probe using SixNy photonics for in vivo optogenetics. In: 2015 IEEE International Electron Devices Meeting (IEDM) (2015)

    Google Scholar 

  54. Stark, E., Koos, T., Buzsaki, G.: Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J. Neurophysiol. 108(1), 349–363 (2012). https://doi.org/10.1152/jn.00153.2012

    Article  Google Scholar 

  55. Kim, T.I., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y.H., Song, J.Z., Song, Y.M., Pao, H.A., Kim, R.H., Lu, C.F., Lee, S.D., Song, I.S., Shin, G., Al-Hasani, R., Kim, S., Tan, M.P., Huang, Y.G., Omenetto, F.G., Rogers, J.A., Bruchas, M.R.: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 340(6129), 211–216 (2013). https://doi.org/10.1126/science.1232437

    Article  Google Scholar 

  56. Schwaerzle, M., Seidl, K., Schwarz, U.T., Paul, O., Ruther, P.: Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications. In: 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 20–24 Jan 2013, pp. 1029–1032 (2013). https://doi.org/10.1109/MEMSYS.2013.6474424

  57. Schwaerzle, M., Ringwald, P., Paul, O., Rüther, P.: First dual-color optrode with bare laser diode chips directly butt-coupled to hybrid-polymer waveguides. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 22–26 Jan 2017, pp. 526–529 (2017). https://doi.org/10.1109/MEMSYS.2017.7863459

  58. McAlinden, N., Massoubre, D., Richardson, E., Gu, E., Sakata, S., Dawson, M.D., Mathieson, K.: Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt. Lett. 38(6), 992–994 (2013). https://doi.org/10.1364/Ol.38.000992

    Article  Google Scholar 

  59. Scharf, R., Tsunematsu, T., McAlinden, N., Dawson, M.D., Sakata, S., Mathieson, K.: Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci. Rep. 6, 28381 (2016). https://doi.org/10.1038/srep28381. https://www.nature.com/articles/srep28381#supplementary-information

    Article  Google Scholar 

  60. Im, M., Cho, I., Wu, F., Wise, K.D., Yoon, E.: Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites. In: 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, 23–27 Jan 2011, pp. 1051–1054 (2011). https://doi.org/10.1109/MEMSYS.2011.5734609

  61. Im, M., Cho, I., Wu, F., Wise, K.D., Yoon, E.A.: Dual-shank neural probe integrated with double waveguides on each shank for optogenetic applications. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 30 Aug–3 Sept 2011, pp. 5480–5483 (2011). https://doi.org/10.1109/IEMBS.2011.6091398

  62. Seymour, J.P.: Advanced polymer-based microfabricated neural probes using biologically driven designs. Dissertation, University of Michigan (2009)

    Google Scholar 

  63. Wu, F., Stark, E., Im, M., Cho, I.J., Yoon, E.S., Buzsaki, G., Wise, K.D., Yoon, E.: An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 10(5), 056012 (2013). https://doi.org/10.1088/1741-2560/10/5/056012

    Article  Google Scholar 

  64. Riedl, M.J.: Optical design fundamentals for infrared systems. SPIE Publications, Bellingham (2001)

    Google Scholar 

  65. Smith, W.J.: Modern Optical Engineering; The Design of Optical Systems. McGraw-Hill, New York/Toronto (1966)

    Google Scholar 

  66. Kampasi, K., Seymour, J., Na, K., Wise, K.D., Yoon, E.: Fiberless multicolor optoelectrodes using Injection Laser Diodes and Gradient-index lens coupled optical waveguides. In: 2015 Transducers – 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21–25 June 2015, pp. 273–276 (2015). https://doi.org/10.1109/TRANSDUCERS.2015.7180914

  67. Kampasi, K., Stark, E., Seymour, J., Na, K., Winful, H.G., Buzaski, G., Wise, K.D., Yoon, E.: Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Sci. Rep. 6, 30961 (2016). https://doi.org/10.1038/srep30961

    Article  Google Scholar 

  68. Hunsperger, R.G.: Integrated Optics, Theory and Technology. Springer Series in Optical Sciences, vol. 33, 2nd edn. Springer-Verlag, Berlin/New York (1984)

    Book  Google Scholar 

  69. Marcatili, E.A.J.: Bends in optical dielectric guides. Bell Syst. Tech. J. 48(7), 2103–2132 (1969). https://doi.org/10.1002/j.1538-7305.1969.tb01167.x

    Article  Google Scholar 

  70. Wise, K.D.: Silicon microsystems for neuroscience and neural prostheses. IEEE Eng. Med. Biol. 24(5), 22–29 (2005). https://doi.org/10.1109/Memb.2005.1511497

    Article  Google Scholar 

  71. Li, Y.-L., Liu, Y.-T.: MicroLED display: the next-generation display technology, vol. 11304. SPIE OPTO. SPIE (2020)

    Google Scholar 

  72. Shields, A.J.: Semiconductor quantum light sources. Nat. Photonics. 1(4), 215–223 (2007). https://doi.org/10.1038/nphoton.2007.46

    Article  Google Scholar 

  73. Bhattacharya, P., Fornari, R., Kamimura, H. (eds): Comprehensive semiconductor science and technology. Elsevier, Amsterdam (2011)

    Google Scholar 

  74. Song, K.M., Park, J.: Effects of the growth pressure of a-plane InGaN/GaN multi-quantum wells on the optical performance of light-emitting diodes. Semicond. Sci. Technol. 28(1), 015010 (2013). https://doi.org/10.1088/0268-1242/28/1/015010

    Article  Google Scholar 

  75. Khan, M.A., Yang, J.W., Simin, G., Gaska, R., Shur, M.S., Zur Loye, H.C., Tamulaitis, G., Zukauskas, A., Smith, D.J., Chandrasekhar, D., Bicknell-Tassius, R.: Lattice and energy band engineering in AlInGaN/GaN heterostructures. Appl. Phys. Lett. 76(9), 1161–1163 (2000). https://doi.org/10.1063/1.125970

    Article  Google Scholar 

  76. Cheng, A.T., Su, Y.K., Lai, W.C.: Improved light output of nitride-based light-emitting diodes by lattice-matched AlInN cladding structure. IEEE Photon. Technol. Lett. 20(9-12), 970–972 (2008). https://doi.org/10.1109/Lpt.2008.922937

    Article  Google Scholar 

  77. Avrutin, V., Silversmith, D.J., Mori, Y., Kawamura, F., Kitaoka, Y., Morkoc, H.: Growth of bulk GaN and AlN: Progress and challenges. Proc. IEEE. 98(7), 1302–1315 (2010). https://doi.org/10.1109/Jproc.2010.2044967

    Article  Google Scholar 

  78. Lee, J.H., Lee, D.Y., Oh, B.W., Lee, J.H.: Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Trans. Electron Devices. 57(1), 157–163 (2010). https://doi.org/10.1109/Ted.2009.2034495

    Article  Google Scholar 

  79. Hoogerwerf, A.C., Wise, K.D.: A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12), 1136–1146 (1994). https://doi.org/10.1109/10.335862

    Article  Google Scholar 

  80. Norlin, P., Kindlundh, M., Mouroux, A., Yoshida, K., Hofmann, U.G.: A 32-site neural recording probe fabricated by DRIE of SOI substrates. J. Micromech. Microeng. 12(4), 414–419 (2002). https://doi.org/10.1088/0960-1317/12/4/312. Pii S0960-1317(02)32547-6

    Article  Google Scholar 

  81. Mion, C., Chang, Y.C., Muth, J.F., Rajagopal, P., Brown, J.D.: Thermal conductivity of GaN grown on silicon substrates. Mater. Res. Soc. Symp. Proc. 798, 381–386 (2003)

    Article  Google Scholar 

  82. Zhu, D., McAleese, C., McLaughlin, K.K., Haberlen, M., Salcianu, C.O., Thrush, E.J., Kappers, M.J., Phillips, W.A., Lane, P., Wallis, D.J., Martin, T., Astles, M., Thomas, S., Pakes, A., Heuken, M., Humphreys, C.J.: GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE. Proc Spie 7231, Unsp 723118 (2009). https://doi.org/10.1117/12.814919

  83. Haberlen, M., Zhu, D.D., McAleese, C., Zhu, T.T., Kappers, M.J., Humphreys, C.J.: Dislocation reduction in GaN grown on Si(111) using a strain-driven 3D GaN interlayer. Phys. Status Solidi B. 247(7), 1753–1756 (2010). https://doi.org/10.1002/pssb.200983537

    Article  Google Scholar 

  84. Fang, X.L., Wang, Y.Q., Meidia, H., Mahajan, S.: Reduction of threading dislocations in GaN layers using in situ deposited silicon nitride masks on AlN and GaN nucleation layers. Appl. Phys. Lett. 84(4), 484–486 (2004). https://doi.org/10.1063/1.1642274

    Article  Google Scholar 

  85. Dadgar, A., Schulze, F., Wienecke, M., Gadanecz, A., Blasing, J., Veit, P., Hempel, T., Diez, A., Christen, J., Krost, A.: Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction. New J. Phys. 9, 389 (2007). https://doi.org/10.1088/1367-2630/9/10/389. Pii S1367-2630(07)50094-7

    Article  Google Scholar 

  86. Krost, A., Dadgar, A.: GaN-based optoelectronics on silicon substrates. Mater. Sci. Eng. B-Solid. 93(1–3), 77–84 (2002). https://doi.org/10.1016/S0921-5107(02)00043-0. Pii S0921-5107(02)00043-0

    Article  Google Scholar 

  87. Sharma, H.S., Hoopes, P.J.: Hyperthermia induced pathophysiology of the central nervous system. Int. J. Hyperth. 19(3), 325–354 (2003). https://doi.org/10.1080/0265673021000054621

    Article  Google Scholar 

  88. Zhu, D.D., McAleese, C., Haberlen, M., Salcianu, C., Thrush, T., Kappers, M., Phillips, A., Lane, P., Kane, M., Wallis, D., Martin, T., Astles, M., Hylton, N., Dawson, P., Humphreys, C.: Efficiency measurement of GaN-based quantum well and light-emitting diode structures grown on silicon substrates. J. Appl. Phys. 109(1), 014502 (2011). https://doi.org/10.1063/1.3530602

    Article  Google Scholar 

  89. **e, X.Z., Rieth, L., Williams, L., Negi, S., Bhandari, R., Caldwell, R., Sharma, R., Tathireddy, P., Solzbacher, F.: Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation. J. Neural Eng. 11(2), 026016 (2014). https://doi.org/10.1088/1741-2560/11/2/026016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, K., Wu, F., Kampasi, K., Seymour, J.P., Wise, K.D., Yoon, E. (2023). High-Density Fiberless Optoelectrodes with Integrated Waveguides and μLEDs. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_22

Download citation

Publish with us

Policies and ethics

Navigation