Nanostructured Platforms Interfacing with Nervous System

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

To provide diagnosis and therapy for dysfunction in the nervous system, various biomaterials and/or medical devices serve as platforms to communicate with the system and regulate dysfunctional neuronal circuits. Recent advances in nanotechnology enable the construction of nanostructured platforms with ultrasmall feature size and superior material property at the nanoscale, targeted at interfacing with the nervous system seamlessly. The chapter provides an overview of nanostructured neural platforms and introduces three main kinds of platforms: nanoelectronics, nanofibers, and nanoparticles. The potential neural applications of the nanostructured platforms are discussed, including neural recording, neural modulation, neural regeneration, and imaging. The interactions between the platforms and the neural cells in vitro and in vivo are also briefly reviewed. The chapter ends with a discussion on existing barriers to clinical translation and future research directions of the platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 909.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 949.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMSC:

Bone marrow stem cell

CNT:

Carbon nanotube

CP:

Conducting polymer

DRG:

Dorsal root ganglion

ECM:

Extracellular matrix

ESC:

Embryonic stem cell

FET:

Field-effect transistor

GO:

Graphene oxide

MAP:

Mussel adhesive protein

NIR:

Near-infrared

NP:

Nanoparticle

NPC:

Neural progenitor cell

NSC:

Neural stem cell

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PLGA:

Poly(lactic-co-glycolic acid)

SC:

Schwann cell

SEM:

Scanning electron microscopy

SNR:

Signal-to-noise ratio

UCNP:

Upconversion nanoparticle

References

  1. Tortora, G.J., Derrickson, B.H.: Principles of Anatomy and Physiology. Wiley, Hoboken (2016)

    Google Scholar 

  2. Kandel, E.R., Schwartz, J.H., Jessell, T.M., et al. (eds.): Principles of Neural Science. McGraw-Hill, New York (2013)

    Google Scholar 

  3. Gooch, C.L., Pracht, E., Borenstein, A.R.: The burden of neurological disease in the United States: a summary report and call to action. Ann. Neurol. 81(4), 479–484 (2017)

    Google Scholar 

  4. Bergen, D.C., Silberberg, D.: Nervous system disorders: a global epidemic. JAMA Neurol. 59(7), 1194–1196 (2002)

    Google Scholar 

  5. Braughler, J.M., Hall, E.D.: Current application of high-dose steroid-therapy for CNS injury- a pharmacological perspective. J. Neurosurg. 62(6), 806–810 (1985)

    Google Scholar 

  6. Nithianantharajah, J., Hannan, A.J.: Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7(9), 697–709 (2006)

    Google Scholar 

  7. Wong, M.L., Licinio, J.: Research and treatment approaches to depression. Nat. Rev. Neurosci. 2(5), 343–351 (2001)

    Google Scholar 

  8. Boksa, P.: Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24(6), 881–897 (2010)

    Google Scholar 

  9. McDonald, J.W., Sadowsky, C.: Spinal-cord injury. Lancet. 359(9304), 417–425 (2002)

    Google Scholar 

  10. Zeng, F.-G., Rebscher, S., Harrison, W., et al.: Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008)

    Google Scholar 

  11. Mills, J.O., Jalil, A., Stanga, P.E.: Electronic retinal implants and artificial vision: journey and present. Eye. 31(10), 1383–1398 (2017)

    Google Scholar 

  12. Schultz, A.E., Kuiken, T.A.: Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM&R. 3(1), 55–67 (2011)

    Google Scholar 

  13. Moro, E., Schwalb, J.M., Piboolnurak, P., et al.: Unilateral subdural motor cortex stimulation improves essential tremor but not Parkinson’s disease. Brain. 134(7), 2096–2105 (2011)

    Google Scholar 

  14. Benabid, A.L.: Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 13(6), 696–706 (2003)

    Google Scholar 

  15. Qi, D.P., Liu, Z.Y., Yu, M., et al.: Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv. Mater. 27(20), 3145–3151 (2015)

    Google Scholar 

  16. Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)

    Google Scholar 

  17. Rodger, D.C., Fong, A.J., Wen, L., et al.: Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens. Actuator B-Chem. 132(2), 449–460 (2008)

    Google Scholar 

  18. Brunton, E.K., Winther-Jensen, B., Wang, C., et al.: In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. Front. Neurosci. 9, 11 (2015)

    Google Scholar 

  19. Ludwig, K.A., Langhals, N.B., Joseph, M.D., et al.: Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J. Neural Eng. 8(1), 014001 (2011)

    Google Scholar 

  20. Zhao, S.Y., Liu, X.J., Xu, Z., et al.: Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett. 16(12), 7731–7738 (2016)

    Google Scholar 

  21. Rivnay, J., Wang, H.L., Fenno, L., et al.: Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017)

    Google Scholar 

  22. Cui, X.Y., Martin, D.C.: Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films. Sens. Actuator A-Phys. 103(3), 384–394 (2003)

    Google Scholar 

  23. Riistama, J., Lekkala, J.: Electrode-electrolyte interface properties in implantation conditions. In: Proceeding of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6021–6024. IEEE, New York (2006)

    Google Scholar 

  24. Abidian, M.R., Martin, D.C.: Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials. 29(9), 1273–1283 (2008)

    Google Scholar 

  25. Yang, J., Martin, D.C.: Microporous conducting polymers on neural microelectrode arrays: II. Physical characterization. Sens. Actuators A-Phys. 113(2), 204–211 (2004)

    Google Scholar 

  26. Yang, J., Martin, D.C.: Microporous conducting polymers on neural microelectrode arrays: I electrochemical deposition. Sens. Actuator B-Chem. 101(1), 133–142 (2004)

    Google Scholar 

  27. Yang, J., Lipkin, K., Martin, D.C.: Electrochemical fabrication of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices. J. Biomater. Sci. Polym. Ed. 18(8), 1075–1089 (2007)

    Google Scholar 

  28. Abidian, M.R., Ludwig, K.A., Marzullo, T.C., et al.: Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly (3,4-ethylenedioxythiophene) nanotubes. Adv. Mater. 21(37), 3764–3770 (2009)

    Google Scholar 

  29. Abidian, M.R., Corey, J.M., Kipke, D.R., et al.: Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 6(3), 421–429 (2010)

    Google Scholar 

  30. Gooding, J.J.: Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta. 50(15), 3049–3060 (2005)

    Google Scholar 

  31. Danailov, D., Keblinski, P., Nayak, S., et al.: Bending properties of carbon nanotubes encapsulating solid nanowires. J. Nanosci. Nanotechnol. 2(5), 503–507 (2002)

    Google Scholar 

  32. Krishnan, A., Dujardin, E., Ebbesen, T.W., et al.: Young’s modulus of single-walled nanotubes. Phys. Rev. B. 58(20), 14013–14019 (1998)

    Google Scholar 

  33. Fattahi, P., Yang, G., Kim, G., et al.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014)

    Google Scholar 

  34. Keefer, E.W., Botterman, B.R., Romero, M.I., et al.: Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3, 434–439 (2008)

    Google Scholar 

  35. Yi, W., Chen, C., Feng, Z., et al.: A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate. Nanotechnology. 26(12), 125301 (2015)

    MathSciNet  Google Scholar 

  36. de Asis, E.D., Nguyen-Vu, T.D.B., Arumugam, P.U., et al.: High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array. Biomed. Microdevices. 11(4), 801–808 (2009)

    Google Scholar 

  37. Shoval, A., Adams, C., David-Pur, M., et al.: Carbon nanotube electrodes for effective interfacing with retinal tissue. Front. Neuroeng. 2, 4 (2009)

    Google Scholar 

  38. Sauter-Starace, F., Bibari, O., Berger, F., et al.: ECoG recordings of a non-human primate using carbon nanotubes electrodes on a flexible polyimide implant. In: Proceeding of the 4th International IEEE/EMBS Conference on Neural Engineering, pp. 112–115. IEEE, Antalya (2009)

    Google Scholar 

  39. Piret, G., Hebert, C., Mazellier, J.P., et al.: 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials. 53, 173–183 (2015)

    Google Scholar 

  40. Bourrier, A., Shkorbatova, P., Bonizzato, M., et al.: Monolayer graphene coating of intracortical probes for long-lasting neural activity monitoring. Adv. Healthc. Mater. 8(18), 1801331 (2019)

    Google Scholar 

  41. Duc, D., Stoddart, P.R., McArthur, S.L., et al.: Fabrication of a biocompatible liquid crystal graphene oxide–gold nanorods electro- and photoactive interface for cell stimulation. Adv. Healthc. Mater. 8(9), 1801321 (2019)

    Google Scholar 

  42. Bareket, L., Waiskopf, N., Rand, D., et al.: Semiconductor nanorod–carbon nanotube biomimetic films for wire-free photostimulation of blind retinas. Nano Lett. 14(11), 6685–6692 (2014)

    Google Scholar 

  43. Chen, N., Luo, B.W., Patil, A.C., et al.: Nanotunnels within poly (3,4-ethylenedioxythiophene) -carbon nanotube composite for highly sensitive neural interfacing. ACS Nano. 14(7), 8059–8073 (2020)

    Google Scholar 

  44. Tullii, G., Giona, F., Lodola, F., et al.: High-aspect-ratio semiconducting polymer pillars for 3D cell cultures. ACS Appl. Mater. Interfaces. 11(31), 28125–28137 (2019)

    Google Scholar 

  45. Chapman, C.A.R., Wang, L., Chen, H., et al.: Nanoporous gold biointerfaces: modifying nanostructure to control neural cell coverage and enhance electrophysiological recording performance. Adv. Funct. Mater. 27(3), 1604631 (2017)

    Google Scholar 

  46. Chen, N., Tian, L., Patil, A.C., et al.: Neural interfaces engineered via micro-and nanostructured coatings. Nano Today. 14, 59–83 (2017)

    Google Scholar 

  47. Acarón Ledesma, H., Li, X., Carvalho-de-Souza, J.L., et al.: An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14(7), 645–657 (2019)

    Google Scholar 

  48. Luan, L., Wei, X., Zhao, Z., et al.: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3(2), e1601966 (2017)

    Google Scholar 

  49. Wei, X., Luan, L., Zhao, Z., et al.: Nanofabricated ultraflexible electrode arrays for high-density intracortical recording. Adv. Sci. 5(6), 1700625 (2018)

    Google Scholar 

  50. Araki, T., Yoshida, F., Uemura, T., et al.: Long-term implantable, flexible, and transparent neural interface based on Ag/Au core–shell nanowires. Adv. Healthc. Mater. 8(10), 1900130 (2019)

    Google Scholar 

  51. Park, D.-W., Ness, J.P., Brodnick, S.K., et al.: Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in gcamp6f mice. ACS Nano. 12(1), 148–157 (2018)

    Google Scholar 

  52. Lee, J.M., Hong, G., Lin, D., et al.: Nanoenabled direct contact interfacing of syringe-injectable mesh electronics. Nano Lett. 19(8), 5818–5826 (2019)

    Google Scholar 

  53. Vitale, F., Summerson, S.R., Aazhang, B., et al.: Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano. 9(4), 4465–4474 (2015)

    Google Scholar 

  54. Lu, L., Fu, X., Liew, Y., et al.: Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 19(3), 1577–1586 (2019)

    Google Scholar 

  55. Guo, Y., Duan, W., Ma, C., et al.: Biocompatibility and magnetic resonance imaging characteristics of carbon nanotube yarn neural electrodes in a rat model. Biomed. Eng. Online. 14(1), 118 (2015)

    Google Scholar 

  56. Yu, X., Su, J.Y., Guo, J.Y., et al.: Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes. J. Neurosci. Methods. 328, 108450 (2019)

    Google Scholar 

  57. Anand, A., Liu, C.R., Chou, A.C., et al.: Detection of K+ efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sens. 2(1), 69–79 (2017)

    Google Scholar 

  58. Hébert, C., Masvidal-Codina, E., Suarez-Perez, A., et al.: Flexible graphene solution-gated field-effect transistors: efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 28(12), 1703976 (2018)

    Google Scholar 

  59. Duan, X., Gao, R., **e, P., et al.: Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7(3), 174–179 (2012)

    Google Scholar 

  60. Fu, T.M., Duan, X., Jiang, Z., et al.: Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. 111(4), 1259–1264 (2014)

    Google Scholar 

  61. Sarker, M., Naghieh, S., McInnes, A.D., et al.: Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnol. J. 13(7), 1700635 (2018)

    Google Scholar 

  62. Das, S., Carnicer-Lombarte, A., Fawcett, J.W., et al.: Bio-inspired nano tools for neuroscience. Prog. Neurobiol. 142, 1–22 (2016)

    Google Scholar 

  63. Lee, J.K.Y., Chen, N., Peng, S., et al.: Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86, 40–84 (2018)

    Google Scholar 

  64. Huang, Z.M., Zhang, Y.Z., Kotaki, M., et al.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Google Scholar 

  65. Chiono, V., Tonda-Turo, C.: Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog. Neurobiol. 131, 87–104 (2015)

    Google Scholar 

  66. Philip, D.L., Silantyeva, E.A., Becker, M.L., et al.: RGD-functionalized nanofibers increase early GFAP expression during neural differentiation of mouse embryonic stem cells. Biomacromolecules. 20(3), 1443–1454 (2019)

    Google Scholar 

  67. **e, J., MacEwan, M.R., Ray, W.Z., et al.: Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano. 4(9), 5027–5036 (2010)

    Google Scholar 

  68. Li, X., Li, M., Sun, J., et al.: Radially aligned electrospun fibers with continuous gradient of sdf1α for the guidance of neural stem cells. Small. 12(36), 5009–5018 (2016)

    Google Scholar 

  69. Krafts, K.P.: Tissue repair the hidden drama. Organogenesis. 6(4), 225–233 (2010)

    Google Scholar 

  70. Langone, A.J., Helderman, J.H.: Disparity between solid-organ supply and demand. N. Engl. J. Med. 349(7), 704–706 (2003)

    Google Scholar 

  71. Place, E.S., Evans, N.D., Stevens, M.M.: Complexity in biomaterials for tissue engineering. Nat. Mater. 8(6), 457–470 (2009)

    Google Scholar 

  72. Xue, J., Wu, T., Li, J., et al.: Promoting the outgrowth of neurites on electrospun microfibers by functionalization with electrosprayed microparticles of fatty acids. Angew. Chem. Int. Ed. 58(12), 3948–3951 (2019)

    Google Scholar 

  73. Wang, J., Zheng, W., Chen, L., et al.: Enhancement of Schwann cells function using graphene-oxide-modified nanofiber scaffolds for peripheral nerve regeneration. ACS Biomater Sci. Eng. 5(5), 2444–2456 (2019)

    Google Scholar 

  74. Chooi, W.H., Ong, W., Murray, A., et al.: Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells. Biomed. Mater. 6(11), 3019–3029 (2018)

    Google Scholar 

  75. Shafiq, M., Jung, Y., Kim, S.H.: Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials. 90, 85–115 (2016)

    Google Scholar 

  76. Wang, S., Qiu, J., Guo, W., et al.: A nanostructured molybdenum disulfide film for promoting neural stem cell neuronal differentiation: toward a nerve tissue-engineered 3D scaffold. Adv. Biosyst. 1(5), 1600042 (2017)

    Google Scholar 

  77. Shah, S., Yin, P.T., Uehara, T.M., et al.: Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv. Mater. 26(22), 3673–3680 (2014)

    Google Scholar 

  78. Zhu, W., Ye, T., Lee, S.J., et al.: Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomed. Nanotechnol. Biol. Med. 14(7), 2485–2494 (2018)

    Google Scholar 

  79. Silantyeva, E.A., Nasir, W., Carpenter, J., et al.: Accelerated neural differentiation of mouse embryonic stem cells on aligned gyigsr-functionalized nanofibers. Acta Biomater. 75, 129–139 (2018)

    Google Scholar 

  80. Boda, S.K., Chen, S., Chu, K., et al.: Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery. ACS Appl. Mater. Interfaces. 10(30), 25069–25079 (2018)

    Google Scholar 

  81. Li, G., Chen, K., You, D., et al.: Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro. Front. Bioeng. Biotechnol. 7, 190 (2019)

    Google Scholar 

  82. Satish, A., Korrapati, P.S.: Tailored release of triiodothyronine and retinoic acid from a spatio-temporally fabricated nanofiber composite instigating neuronal differentiation. Nanoscale. 9(38), 14565–14580 (2017)

    Google Scholar 

  83. Qing, H., **, G., Zhao, G., et al.: Heterostructured silk-nanofiber-reduced graphene oxide composite scaffold for SH-SY5Y cell alignment and differentiation. ACS Appl. Mater. Interfaces. 10(45), 39228–39237 (2018)

    Google Scholar 

  84. Chen, C., Zhang, T., Zhang, Q., et al.: Biointerface by cell growth on graphene oxide doped bacterial cellulose/poly(3,4-ethylenedioxythiophene) nanofibers. ACS Appl. Mater. Interfaces. 8(16), 10183–10192 (2016)

    Google Scholar 

  85. Tsai, N.C., She, J.W., Wu, J.G., et al.: Poly(3,4-ethylenedioxythiophene) polymer composite bioelectrodes with designed chemical and topographical cues to manipulate the behavior of PC12 neuronal cells. Adv. Mater. Interfaces. 6(5), 1801576 (2019)

    Google Scholar 

  86. Xue, J., Yang, J., O’Connor, D.M., et al.: Differentiation of bone marrow stem cells into Schwann cells for the promotion of neurite outgrowth on electrospun fibers. ACS Appl. Mater. Interfaces. 9(14), 12299–12310 (2017)

    Google Scholar 

  87. Milbreta, U., Nguyen, L.H., Diao, H., et al.: Three-dimensional nanofiber hybrid scaffold directs and enhances axonal regeneration after spinal cord injury. ACS Biomater Sci. Eng. 2(8), 1319–1329 (2016)

    Google Scholar 

  88. Cheong, H., Kim, J., Kim, B.J., et al.: Multi-dimensional bioinspired tactics using an engineered mussel protein glue-based nanofiber conduit for accelerated functional nerve regeneration. Acta Biomater. 90, 87–99 (2019)

    Google Scholar 

  89. Salehi, M., Ehtrami, A., Bastami, F., et al.: Polyurethane/gelatin nanofiber neural guidance conduit in combination with resveratrol and Schwann cells for sciatic nerve regeneration in the rat model. Fibers Polym. 20(3), 490–500 (2019)

    Google Scholar 

  90. Hong, M.H., Hong, H.J., Pang, H., et al.: Controlled release of growth factors from multilayered fibrous scaffold for functional recoveries in crushed sciatic nerve. ACS Biomater Sci. Eng. 4(2), 576–586 (2018)

    MathSciNet  Google Scholar 

  91. Biazar, E., Heidari Keshel, S., Pouya, M.: Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft. Cell Commun. Adhes. 20(5), 93–103 (2013)

    Google Scholar 

  92. Carvalho-de-Souza, J.L., Pinto, B.I., Pepperberg, D.R., et al.: Optocapacitive generation of action potentials by microsecond laser pulses of nanojoule energy. Biophys. J. 114(2), 283–288 (2018)

    Google Scholar 

  93. Carvalho-de-Souza João, L., Treger Jeremy, S., Dang, B., et al.: Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 86(1), 207–217 (2015)

    Google Scholar 

  94. Pliss, A., Ohulchanskyy, T.Y., Chen, G., et al.: Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics. 4(4), 806–814 (2017)

    Google Scholar 

  95. Ma, Y., Bao, J., Zhang, Y., et al.: Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell. 177(2), 243–255.e215 (2019)

    Google Scholar 

  96. Huang, H., Delikanli, S., Zeng, H., et al.: Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5(8), 602–606 (2010)

    Google Scholar 

  97. Marshall, J.D., Schnitzer, M.J.: Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano. 7(5), 4601–4609 (2013)

    Google Scholar 

  98. Tsai, T.C., Guo, C.X., Han, H.Z., et al.: Microelectrodes with gold nanoparticles and self-assembled monolayers for in vivo recording of striatal dopamine. Analyst. 137(12), 2813–2820 (2012)

    Google Scholar 

  99. Zhao, Z., Yuan, J., Zhao, X., et al.: Engineering the infrared luminescence and photothermal properties of double-shelled rare-earth-doped nanoparticles for biomedical applications. ACS Biomater Sci. Eng. 5(8), 4089–4101 (2019)

    Google Scholar 

  100. Zeng, X., Chen, S., Weitemier, A., et al.: Visualization of intra-neuronal motor protein transport through upconversion microscopy. Angew. Chem. Int. Ed. 58(27), 9262–9268 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seeram Ramakrishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, N., Ramakrishna, S., Thakor, N.V. (2023). Nanostructured Platforms Interfacing with Nervous System. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_17

Download citation

Publish with us

Policies and ethics

Navigation