Challenges for Large-Scale Brain-Machine Interfaces

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

The execution of complex, naturalistic neural tasks relies on the coordinated operation of cortical microcircuits across multiple related functional areas of the brain. Cortical BCI technologies aimed at accessing these distributed computations are thus anticipated to require a large number of spatially diverse, implanted electronic listening posts or nodes, appropriately positioned in physical proximity to the sources of these neural signals. From a neuroengineering perspective, key aspects of the specifications for a next-generation BCI system include considerations of the channel counts that may be safely implanted chronically in vivo subjects, as well as efficient approaches for physical implementations of large arrays of microscale electronic probes. Data rates for extracting brain signals at a useful resolution have to be contemplated in the context of designing a commensurate communication link facilitating low-latency forward transmission for decoding by external computing platforms. This must of course occur in concert with the reverse processes, whereby the same implanted probes would provide a means to “write-in” feedback information into the brain through injection of electronic signals directly into the cortex. This chapter reviews contemporary examples and recent accomplishments in the field, from the viewpoint of systems level engineering, and discusses both the challenges and opportunities ahead to build next generations of brain-computer interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, N., Cavuto, M.L., Feng, P., Leene, L.B., Maslik, M., Mazza, F., … Jackson, A.: Towards a distributed, chronically-implantable neural interface. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 719–724. IEEE (2019)

    Google Scholar 

  2. Bensmaia, S.J., Miller, L.E.: Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15(5), 313–325 (2014)

    Article  Google Scholar 

  3. Borton, D.A., Yin, M., Aceros, J., Nurmikko, A.: An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10(2), 026010 (2013)

    Article  Google Scholar 

  4. Dutta, B., Andrei, A., Harris, T.D., Lopez, C.M., O’Callahan, J., Putzeys, J., … Welkenhuysen, M.: The Neuropixels probe: a CMOS based integrated microsystems platform for neuroscience and brain-computer interfaces. In: 2019 IEEE International Electron Devices Meeting (IEDM), pp. 10–11). IEEE. (2019)

    Google Scholar 

  5. Flesher, S.N., Collinger, J.L., Foldes, S.T., Weiss, J.M., Downey, J.E., Tyler-Kabara, E.C., … Gaunt, R.A.: Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8(361), 361ra141–361ra141 (2016)

    Google Scholar 

  6. Gao, P., Trautmann, E., Byron, M.Y., Santhanam, G., Ryu, S., Shenoy, K., Ganguli, S.: A theory of multineuronal dimensionality, dynamics and measurement. BioRxiv 214262 (2017)

    Google Scholar 

  7. Ghovanloo, M., Najafi, K.: A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. IEEE Trans. Biomed. Eng. 52(1), 97–105 (2004)

    Article  Google Scholar 

  8. Harrison, R.R.: A low-power integrated circuit for adaptive detection of action potentials in noisy signals. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), vol. 4, pp. 3325–3328. IEEE (2003)

    Google Scholar 

  9. Heelan, C., Nurmikko, A.V., Truccolo, W.: FPGA implementation of deep-learning recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural sensors (104 nodes). In: Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1070–1073. IEEE (2018)

    Google Scholar 

  10. Heelan, C., Lee, J., O’Shea, R., Lynch, L., Brandman, D.M., Truccolo, W., Nurmikko, A.V.: Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates. Commun. Biol. 2(1), 1–12 (2019)

    Article  Google Scholar 

  11. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., … Donoghue, J.P.: Reach and grasp by people with tetraplegia using a neutrally controlled robotic arm. Nature 485(7398), 372–375 (2012)

    Google Scholar 

  12. Hoogerwerf, A.C., Wise, K.D.: A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12), 1136–1146 (1994)

    Article  Google Scholar 

  13. Huang, J., Laiwalla, F., Lee, J., Cui, L., Leung, V., Nurmikko, A., Mercier, P.P.: A 0.01-mm 2 mostly digital capacitor-less AFE for distributed autonomous neural sensor nodes. IEEE Solid-State Circ. Lett. 1(7), 162–165 (2018)

    Article  Google Scholar 

  14. Jeong, J., Laiwalla, F., Lee, J., Ritasalo, R., Pudas, M., Larson, L., et al.: Conformal hermetic sealing of wireless microelectronic implantable chiplets by multilayered atomic layer deposition (ALD). Adv. Funct. Mater. 29(5), 1806440 (2019)

    Article  Google Scholar 

  15. Jones, K.E., Campbell, P.K., Normann, R.A.: A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20(4), 423–437 (1992)

    Article  Google Scholar 

  16. Khalifa, A., Karimi, Y., Wang, Q., Garikapati, S., Montlouis, W., Stanaćević, M., … Etienne-Cummings, R.: The microbead: a highly miniaturized wirelessly powered implantable neural stimulating system. IEEE Trans. Biomed. Circ. Syst. 12(3), 521–531 (2018)

    Google Scholar 

  17. Laiwalla, F., Lee, J., Lee, A.H., Mok, E., Leung, V., Shellhammer, S., … Nurmikko, A.: A distributed wireless network of implantable sub-mm cortical microstimulators for brain-computer interfaces. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6876–6879. IEEE (2019)

    Google Scholar 

  18. Lee, A.-H., Lee, J., Laiwalla, F., Leung, V., Huang, J., Nurmikko, A., Song, Y.-K.: A scalable and low stress post-CMOS processing technique for implantable neural interfaces. Submitted to Micromachines (2020)

    Google Scholar 

  19. Lee, J., Leung, V., Lee, A.-H., Huang, J., Asbeck, P., Mercier, P.P., Shellhammer, S., Larson, L., Laiwalla, F., Nurmikko, A.: Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4(8), 604–614 (2021)

    Google Scholar 

  20. Lee, J., Laiwalla, F., Jeong, J., Kilfoyle, C., Larson, L., Nurmikko, A., … Leung, V.W.: Wireless power and data link for ensembles of sub-mm scale implantable sensors near 1GHz. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2018)

    Google Scholar 

  21. Lee, J., Mok, E., Huang, J., Cui, L., Lee, A.H., Leung, V., … Rao, R.:. An implantable wireless network of distributed microscale sensors for neural applications. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 871–874. IEEE (2019)

    Google Scholar 

  22. Leung, V.W., Lee, J., Li, S., Yu, S., Kilfovle, C., Larson, L., Nurmikko, A., Laiwalla F.: A CMOS distributed sensor system for high-density wireless neural implants for brain-machine interfaces. In ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC), pp. 230–233. IEEE (2018)

    Google Scholar 

  23. Leung, V.W., Cui, L., Alluri, S., Lee, J., Huang, J., Mok, E., Shellhammer, S.: Distributed microscale brain implants with wireless power transfer and Mbps bi-directional networked communications. In 2019 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4. IEEE (2019)

    Google Scholar 

  24. Musk, E.: An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21(10), e16194 (2019)

    Article  Google Scholar 

  25. Seo, D., Neely, R.M., Shen, K., Singhal, U., Alon, E., Rabaey, J.M., … Maharbiz, M.M.: Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016)

    Google Scholar 

  26. Simeral, J.D., Hosman, T., Saab, J., Flesher, S.N., Vilela, M., Franco, B., Kelemen, J.N. et al.: Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Trans. Biomed. Eng. 68(7) 2313–2325 (2021)

    Google Scholar 

  27. Simeral, John D., Thomas Hosman, Jad Saab, Sharlene N. Flesher, Marco Vilela, Brian Franco, Jessica N. Kelemen et al. Home use of a percutaneous wireless intracortical brain-computer interface by individuals with tetraplegia. IEEE Transactions on Biomedical Engineering68(7) 2313–2325 (2021)

    Google Scholar 

  28. Theilmann, P.T., Presti, C.D., Kelly, D.J., Asbeck, P.M.: A-W complementary bridge rectifier with near zero turn-on voltage in SOS CMOS for wireless power supplies. IEEE Trans. Circ. Syst. Regular Papers. 59(9), 2111–2124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tsai, D., Sawyer, D., Bradd, A., Yuste, R., Shepard, K.L.: A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8(1), 1–11 (2017)

    Article  Google Scholar 

  30. Yang, K., Dong, Q., Blaauw, D., Sylvester, D.: 8.3 A 553F 2 2-transistor amplifier-based Physically Unclonable Function (PUF) with 1.67% native instability. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 146–147. IEEE (2017)

    Google Scholar 

  31. Yeon, P., Bakir, M.S., Ghovanloo, M.: Towards a 1.1 mm 2 free-floating wireless implantable neural recording SoC. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4. IEEE (2018)

    Google Scholar 

  32. Yin, M., Borton, D.A., Aceros, J., Patterson, W.R., Nurmikko, A.V.: A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circ. Syst. 7(2), 115–128 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arto Nurmikko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laiwalla, F., Leung, V., Larson, L., Nurmikko, A. (2023). Challenges for Large-Scale Brain-Machine Interfaces. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_103

Download citation

Publish with us

Policies and ethics

Navigation