Antioxidant/Pro-oxidant, Anti-inflammatory, and Immunomodulatory Effects of Thymoquinone in Cancer Prevention and Treatment

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cancer, considered as the second leading cause of death after myocardial infarction, is a major health problem around the world. Since conventional methods such as chemotherapy and radiotherapy are often insufficient in cancer treatment, studies for alternative treatment methods are pursued. Researchers have been investigating the low doses of high selectivity plant-based active ingredients to kill cancer cells. In recent years, medicinal plants and their active ingredients have been used as an alternative therapy method in many diseases such as cancer, and their positive effects have been shown. Thymoquinone (TQ), an active ingredient of Nigella sativa (N. sativa), is used in both the prevention and treatment of various types of cancer due to its antioxidant/pro-oxidant, anti-inflammatory, and immunomodulatory properties.

Methods: In this context, in the light of the literature, both prevention and treatment of cancer and antioxidant/pro-oxidant, anti-inflammatory, and immunomodulatory activities of TQ will be evaluated.

Results: In this section, we provide a review on the antioxidant/pro-oxidant, anti-inflammatory, and immunomodulatory role of TQ in cancer prevention and treatment based on in vitro and in vivo studies.

Conclusion: TQ has an important role in the prevention and treatment of cancer with its antioxidant/pro-oxidant, anti-inflammatory, and immunomodulatory effects; however, clinical data is not sufficient. To explore the exact benefits of TQ in cancer management, further clinical studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abuharfeil N, Maraqa A, Von Kleist S (2000) Augmentation of natural killer cell activity in vitro against tumor cells by wild plants from Jordan. J Ethnopharmacol 71(1–2):55–63

    CAS  Google Scholar 

  • Abuharfeil N, Salim M, Von Kleist S (2001) Augmentation of natural killer cell activity in vivo against tumour cells by some wild plants from Jordan. Phytother Res 15(2):109–113

    CAS  Google Scholar 

  • Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P (2008) Potential of spice-derived phytochemicals for cancer prevention. Planta Med 74(13):1560–1569

    CAS  Google Scholar 

  • Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA et al (2013) A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed 3(5):337–352

    Google Scholar 

  • Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse 35(2):151–159

    CAS  Google Scholar 

  • Aslam H, Shahzad M, Shabbir A, Irshad S (2018) Immunomodulatory effect of thymoquinone on atopic dermatitis. Mol Immunol 101:276–283

    CAS  Google Scholar 

  • Atta MS, Almadaly EA, El-Far AH, Saleh RM, Assar DH, Al Jaouni SK, Mousa SA (2017) Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int J Mol Sci 18(5):919

    Google Scholar 

  • Aziz N, Son Y-J, Cho JY (2018) Thymoquinone suppresses IRF-3-mediated expression of type I interferons via suppression of TBK1. Int J Mol Sci 19(5):1355

    Google Scholar 

  • Badary O, Al-Shabanah O, Nagi M, Al-Rikabi A, Elmazar MM (1999) Inhibition of benzo (a) pyrene-induced forestomach carcinogenesis in mice by thymoquinone. Eur J Cancer Prev 8(5):435–440

    CAS  Google Scholar 

  • Badary OA, Gamal El-Din AM (2001) Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect Prev 25(4):362–368

    CAS  Google Scholar 

  • Badary OA, Taha RA, Gamal El-Din AM, Abdel-Wahab MH (2003) Thymoquinone is a potent superoxide anion scavenger. Drug Chem Toxicol 26(2):87–98

    CAS  Google Scholar 

  • Bartsch H, Nair J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck's Arch Surg 391(5):499–510

    Google Scholar 

  • Chae IG, Song N-Y, Kim D-H, Lee M-Y, Park J-M, Chun K-S (2020) Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem Toxicol 139:111253

    CAS  Google Scholar 

  • Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA (2009) Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB 11(5):373–381

    Google Scholar 

  • Connelly L, Barham W, Onishko HM, Sherrill T, Chodosh LA, Blackwell TS, Yull FE (2011) Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene 30(12):1402–1412

    CAS  Google Scholar 

  • Dastjerdi MN, Mehdiabady EM, Iranpour FG, Bahramian HJ (2016) Effect of thymoquinone on P53 gene expression and consequence apoptosis in breast cancer cell line. Int J Prev Med 7:66

    Google Scholar 

  • De Bock M, Thorstensen EB, Derraik JG, Henderson HV, Hofman PL, Cutfield WS (2013) Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol Nutr Food Res 57(11):2079–2085

    CAS  Google Scholar 

  • Devi PU (2004) Basics of carcinogenesis. Health Adm 17(1):16–24

    Google Scholar 

  • Dur A, Köse H, Koçyiğit A, Kocaman O, Ismayilova M, Sonmez FC (2016) The anti-inflammatory and antioxidant effects of thymoquinone on ceruleine-induced acute pancreatitis in rats

    Google Scholar 

  • El-Kadi A, Kandil O (1986) Effect of Nigella sativa (the black seed) on immunity. Paper presented at the Proceeding of the 4th International Conference on Islamic Medicine, Kuwait. Bull Islamic Med

    Google Scholar 

  • Elsherbiny NM, El-Sherbiny M (2014) Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact 223:102–108

    CAS  Google Scholar 

  • Erboga M, Aktas C, Kurt O, Uygur R, Caglar V, Turan B et al (2016) Protective effects of thymoquinone on experimental testicular ischaemia–reperfusion injury: an apoptotic, proliferative and biochemical study. Andrologia 48(2):222–230

    CAS  Google Scholar 

  • Fararh K, Atoji Y, Shimizu Y, Shiina T, Nikami H, Takewaki T (2004) Mechanisms of the hypoglycaemic and immunopotentiating effects of Nigella sativa L. oil in streptozotocin-induced diabetic hamsters. Res Vet Sci 77(2):123–129

    CAS  Google Scholar 

  • Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A (2008) Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med 12(1):330–342

    Google Scholar 

  • Goreja W (2003) Black seed: nature’s miracle remedy. Karger Publishers

    Google Scholar 

  • Guan D, Li Y, Peng X, Zhao H, Mao Y, Cui Y (2018) Thymoquinone protects against cerebral small vessel disease: role of antioxidant and anti-inflammatory activities. J Biol Regul Homeost Agents 32(2):225–231

    CAS  Google Scholar 

  • Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35(1):32–46

    CAS  Google Scholar 

  • Hajhashemi V, Ghannadi A, Jafarabadi H (2004) Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 18(3):195–199

    CAS  Google Scholar 

  • Halappanavar S, Van Den Brule S, Nymark P, Gaté L, Seidel C, Valentino S et al (2020) Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part Fibre Toxicol 17:1–24

    Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401(1):1–11

    CAS  Google Scholar 

  • Han Y, Jo H, Cho JH, Dhanasekaran DN, Song YS (2019) Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer. Int J Mol Sci 20(4):925

    CAS  Google Scholar 

  • Hassan S, Ahmed W, M Galeb F, El-Taweel M, Abu-Bedair FA (2010) In vitro challenge using thymoquinone on hepatocellular carcinoma (HepG2) cell line. Iran J Pharmaceut Res (4):283–290

    Google Scholar 

  • Hatiboglu MA, Kocyigit A, Guler EM, Akdur K, Nalli A, Karatas E, Tuzgen S (2018) Thymoquinone induces apoptosis in B16-F10 melanoma cell through inhibition of p-STAT3 and inhibits tumor growth in a murine intracerebral melanoma model. World Neurosurg 114:e182–e190

    Google Scholar 

  • Hussain AR, Ahmed M, Ahmed S, Manogaran P, Platanias LC, Alvi SN, Al-Kuraya KS, Uddin S (2011) Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med 50(8):978–987

    CAS  Google Scholar 

  • Jrah-Harzallah H, Ben-Hadj-Khalifa S, Almawi WY, Maaloul A, Houas Z, Mahjoub T (2013) Effect of thymoquinone on 1, 2-dimethyl-hydrazine-induced oxidative stress during initiation and promotion of colon carcinogenesis. Eur J Cancer 49(5):1127–1135

    CAS  Google Scholar 

  • Kassab RB, El-Hennamy RE (2017) The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt J Basic Appl Sci 4(3):160–167

    Google Scholar 

  • Kelloff GJ, Sigman CC, Johnson KM, Boone CW, Greenwald P, Crowell JA et al (2000) Perspectives on surrogate end points in the development of drugs that reduce the risk of cancer. Cancer Epidemiol Prevent Biomarkers 9(2):127–137

    CAS  Google Scholar 

  • Khan A, Chen H, Tania M, Zhang DZ (2011) Anticancer activities of Nigella sativa (black cumin). Afr J Tradit Complem Altern Med 8(5S)

    Google Scholar 

  • Khan MA, Tania M, Fu S, Fu J (2017) Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget 8(31):51907

    Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5(2):112–117

    CAS  Google Scholar 

  • Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267

    CAS  Google Scholar 

  • Klouwenberg PMK, Ong DS, Bos LD, de Beer FM, van Hooijdonk RT, Huson MA et al (2013) Interobserver agreement of Centers for Disease Control and Prevention criteria for classifying infections in critically ill patients. Crit Care Med 41(10):2373–2378

    Google Scholar 

  • Koçyiğit A, Guler EM, Şişman BH, Hatiboğlu MA (2021) Investigation of cellular effects of thymoquinone on glioma cell

    Google Scholar 

  • Koka PS, Mondal D, Schultz M, Abdel-Mageed AB, Agrawal KC (2010) Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species. Exp Biol Med 235(6):751–760

    CAS  Google Scholar 

  • Kooti W, Hasanzadeh-Noohi Z, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D (2016) Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med 14(10):732–745

    CAS  Google Scholar 

  • Kovesdy CP, Anderson JE, Kalantar-Zadeh K (2007) Paradoxical association between body mass index and mortality in men with CKD not yet on dialysis. Am J Kidney Dis 49(5):581–591

    Google Scholar 

  • Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501(1):65–72

    CAS  Google Scholar 

  • Liskova A, Stefanicka P, Samec M, Smejkal K, Zubor P, Bielik T et al (2020) Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med 20(2):173–190

    CAS  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118

    CAS  Google Scholar 

  • Lu Y, Feng Y, Liu D, Zhang Z, Gao K, Zhang W, Tang H (2018) Thymoquinone attenuates myocardial ischemia/reperfusion injury through activation of SIRT1 signaling. Cell Physiol Biochem 47(3):1193–1206

    CAS  Google Scholar 

  • Mabrouk A, Cheikh HB (2016) Thymoquinone ameliorates lead-induced suppression of the antioxidant system in rat kidneys. Libyan J Med 11(1)

    Google Scholar 

  • Majdalawieh AF, Fayyad MW, Nasrallah GK (2017) Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit Rev Food Sci Nutr 57(18):3911–3928

    CAS  Google Scholar 

  • Majdalawieh AF, Hmaidan R, Carr RI (2010) Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol 131(2):268–275

    CAS  Google Scholar 

  • Mansour M, Tornhamre S (2004) Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J Enzyme Inhib Med Chem 19(5):431–436

    CAS  Google Scholar 

  • Melief C, Kast W (1992) Lessons from T cell responses to virus induced tumours for cancer eradication in general. Cancer Surv 13:81–99

    CAS  Google Scholar 

  • Migliore L, Coppedè F (2002) Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res 512(2–3):135–153

    CAS  Google Scholar 

  • Morvan MG, Lanier LL (2016) NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 16(1):7

    CAS  Google Scholar 

  • Mosbah R, Djerrou Z, Mantovani A (2018) Protective effect of Nigella sativa oil against acetamiprid induced reproductive toxicity in male rats. Drug Chem Toxicol 41(2):206–212

    CAS  Google Scholar 

  • Nagi MN, Almakki HA (2009) Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 23(9):1295–1298

    CAS  Google Scholar 

  • Nili-Ahmadabadi A, Tavakoli F, Hasanzadeh G, Rahimi H, Sabzevari O (2011) Protective effect of pretreatment with thymoquinone against Aflatoxin B1 induced liver toxicity in mice. Daru: journal of Faculty of Pharmacy, Tehran University of Medical Sciences 19(4):282

    CAS  Google Scholar 

  • Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132(3):515–525

    CAS  Google Scholar 

  • Pool-Zobel B, Veeriah S, Böhmer F-D (2005) Modulation of xenobiotic metabolising enzymes by anticarcinogens—focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 591(1–2):74–92

    CAS  Google Scholar 

  • Qiao Y, He H, Jonsson P, Sinha I, Zhao C, Dahlman-Wright K (2016) AP-1 is a key regulator of proinflammatory cytokine TNFα-mediated triple-negative breast cancer progression. J Biol Chem 291(10):5068–5079

    CAS  Google Scholar 

  • Robaszkiewicz A, Balcerczyk A, Bartosz G (2007) Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 31(10):1245–1250

    CAS  Google Scholar 

  • Salem M, Alenzi F, Attia W (2011) Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro. Br J Biomed Sci 68(3):131–137

    CAS  Google Scholar 

  • Salim LZA, Othman R, Abdulla MA, Al-Jashamy K, Ali HM, Hassandarvish P et al (2014) Thymoquinone inhibits murine leukemia WEHI-3 cells in vivo and in vitro. PloS One 9(12):e115340

    Google Scholar 

  • Sayed-Ahmed MM, Aleisa AM, Al-Rejaie SS, Al-Yahya AA, Al-Shabanah OA, Hafez MM, Nagi MN (2010) Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxidative Med Cell Longev 3(4):254–261

    Google Scholar 

  • Sedaghat R, Roghani M, Khalili M (2014) Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iranian J Pharm Res IJPR 13(1):227

    CAS  Google Scholar 

  • Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6(6):1059–1070

    CAS  Google Scholar 

  • Shabsoug B, Khalil R, Abuharfeil N (2008) Enhancement of natural killer cell activity in vitro against human tumor cells by some plants from Jordan. J Immunotoxicol 5(3):279–285

    CAS  Google Scholar 

  • Shaterzadeh-Yazdi H, Noorbakhsh M-F, Hayati F, Samarghandian S, Farkhondeh T (2018) Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders) 18(1):52–60

    CAS  Google Scholar 

  • Singh SK, Mishra MK, Lillard JW, Singh R (2018) Thymoquinone enhanced the tumoricidal activity of NK Cells against Lung Cancer. Am Assoc Immnol

    Google Scholar 

  • Staniek K, Gille L (2010) Is thymoquinone an antioxidant? Paper presented at the BMC pharmacology

    Google Scholar 

  • Taborsky J, Kunt M, Kloucek P, Lachman J, Zeleny V, Kokoska L (2012) Identification of potential sources of thymoquinone and related compounds in Asteraceae, Cupressaceae, Lamiaceae, and Ranunculaceae families. Open Chem 10(6):1899–1906

    CAS  Google Scholar 

  • Taha M, Sheikh B, Salim L, Mohan S, Khan A, Kamalidehghan B et al (2016) Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line. Cell Mol Biol 62(6):97–101

    CAS  Google Scholar 

  • Vaillancourt F, Silva P, Shi Q, Fahmi H, Fernandes JC, Benderdour M (2011) Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J Cell Biochem 112(1):107–117

    CAS  Google Scholar 

  • Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033

    CAS  Google Scholar 

  • Visconti R, Grieco D (2009) New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel 12(2):240–245

    CAS  Google Scholar 

  • Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res 45(1):1–8

    CAS  Google Scholar 

  • Woo CC, Loo SY, Gee V, Yap CW, Sethi G, Kumar AP, Tan KHB (2011) Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochem Pharmacol 82(5):464–475

    CAS  Google Scholar 

  • Xu D, Ma Y, Zhao B, Li S, Zhang Y, Pan S et al (2014) Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol Rep 31(5):2063–2070

    CAS  Google Scholar 

  • Xuan NT, Shumilina E, Qadri SM, Götz F, Lang F (2010) Effect of thymoquinone on mouse dendritic cells. Cell Physiol Biochem 25(2–3):307–314

    CAS  Google Scholar 

  • Yang Y, Bai T, Yao Y-L, Zhang D-Q, Wu Y-L, Lian L-H, Nan J-X (2016) Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol Lett 262:80–91

    CAS  Google Scholar 

  • Zhu F, Du B, Xu B (2018) Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: a review. Crit Rev Food Sci Nutr 58(8):1260–1270

    CAS  Google Scholar 

  • Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Schoneveld O et al (2010) The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem Biol Interact 188(2):334–339

    CAS  Google Scholar 

  • Zubair H, Khan H, Sohail A, Azim S, Ullah M, Ahmad A et al (2013) Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. Cell Death Dis 4(6):e660–e660

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahim Kocyigit .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kocyigit, A., Guler, E.M. (2022). Antioxidant/Pro-oxidant, Anti-inflammatory, and Immunomodulatory Effects of Thymoquinone in Cancer Prevention and Treatment. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_193

Download citation

Publish with us

Policies and ethics

Navigation