Proteomics and Metabolomics in Cancer Diagnosis and Therapy

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Cancer apparently seems to be incurable but a deeper introspection reveals other story. Cancer survival rate can be increased significantly with early detection and proper therapeutic intervention. It can be vividly justified by the fact that breast cancer survival rates in high-income countries have reached over 80% while it is nearly 50% or even below in poorer countries. The reason for such contrasting picture can be understood as effective therapeutic facilities are available in above 90% of the developed countries as compared to treatment availability in below 30% of poorer countries. Proper diagnostic facilities are also lacking as only 26% of poorer countries can offer public sector pathology services according to 2017 WHO data. Conventional diagnostic approaches usually rely up on the clinical manifestation of aberration symptoms for disease diagnosis which is associated with significant delay in onset of therapeutic intervention. This is fatal, particularly for cancer as it urges earliest detection, preferably before metastasis for effective treatment outcome. State-of-the-art high-throughput proteomics and metabolomics techniques can offer solution as they identify the disease-associated molecular signatures much earlier than the traditional methods. Further, high resolution, single-cell or even organelle level penetration, extreme sensitivity, considerable reliability, and automation render them as potential platforms for identification of novel therapeutic targets as well which can facilitate development of extremely precise target-specific drugs to overcome the systemic side effects of traditional cancer chemotherapeutics. Separation-based chromatographic and electrophoretic methods such as liquid or gas chromatography (LC/GC) or capillary electrophoresis (CE) coupled with mass spectrometry (MS), Fluorescence-based methods, Raman-based methods, nuclear magnetic resonance (NMR), direct mass spectrometry imaging (MSI) are the mainstay of currently available proteomics and metabolomics analytical platforms. Although the spatiotemporal analyte dynamicity; generation, handling, and meaningful interpretation of the large data in biological context; dearth of universal standardized analytical protocols and specialized databases are posing limitations but continuous efforts from several stakeholders throughout the world is progressively alleviating the hurdles for transition of these high-end techniques from research arena to the field of routine clinical cancer diagnosis and therapy. Relentless progress in sample handling methods, instrumentation, computational software and data analyses programs ensure intense prospect of the techniques in oncology arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abooshahab R, Hooshmand K, Razavi SA, Gholami M, Sanoie M, Hedayati M (2020) Plasma metabolic profiling of human thyroid nodules by gas chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics. Front Cell Dev Biol 8:385, Pages 1–13. https://doi.org/10.3389/fcell.2020.00385

  • Beger RD, Schnackenberg LK, Holland RD et al (2006) Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics 2:125–134. https://doi.org/10.1007/s11306-006-0026-2

    Article  CAS  Google Scholar 

  • Callejón-Leblic B, García-Barrera T, Grávalos-Guzmán J, Pereira-Vega A, Gómez-Ariza JL (2016) Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/gas chromatography mass spectrometry platform. J Proteome 145:197–206. https://doi.org/10.1016/j.jprot.2016.05.030

    Article  CAS  Google Scholar 

  • Cao C, Kim JP, Kim BW, Chae H, Yoon HC et al (2006) A strategy forsensitivity and specificity enhancements in prostate specific antigen-alpha1-antichymotrypsin detection based on surface plasmon resonance. Biosens Bioelectron 21:2106–2113

    Article  CAS  Google Scholar 

  • Chen J, Wang W, Lv S, Yin P, Zhao X, Lu X, Fengxia Z, Xu G (2009) Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal Chim Acta 650(1):3–9. https://doi.org/10.1016/j.aca.2009.03.039

    Article  CAS  Google Scholar 

  • Chen Z, Dodig-Crnković T, Schwenk JM et al (2018) Current applications of antibody microarrays. Clin Proteomics 15:7, Pages 1–15. https://doi.org/10.1186/s12014-018-9184-2

  • Cheng X, Liu X, Liu X, Guo Z, Sun H, Zhang M, Zhigang J, Sun W (2018) Metabolomics of non-muscle invasive bladder cancer: biomarkers for early detection of bladder cancer. Front Oncol 8:494, Pages 1–11. https://doi.org/10.3389/fonc.2018.00494

  • David N, Duyne R, Bingham J (2008) Localized surface plasmonresonancenanobiosensors for the detection of a prostate cancer biomarker. Nanoscape 5:14–19

    Google Scholar 

  • Dekker LJ, Boogerd W, Stockhammer G, Dalebout JC, Siccama I, Zheng P, Bonfrer JM, Verschuuren JJ, Jenster G, Verbeek MM, Luider TM, Smitt PAS (2005) MALDI-TOF mass spectrometry analysis of cerebrospinal fluid tryptic peptide profiles to diagnose leptomeningeal metastases in patients with breast cancer. Mol Cell Proteomics 4(9):1341–1349. https://doi.org/10.1074/mcp.m500081-mcp200

    Article  CAS  Google Scholar 

  • Diagnostic Automation/Cortez Diagnostics, Inc http://www.rapidtest.com

  • Dudka I, Thysell E, Lundquist K, Antti H, Iglesias-Gato D, Flores-Morales A, Bergh A, Wikström P, Gröbner G (2020) Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion status. BMC Cancer 20(1):437, Pages 1–17, https://doi.org/10.1186/s12885-020-06908-z

  • Engvall E, Perlmann P (1972) Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol 109(1):129–135

    Article  CAS  Google Scholar 

  • Fang F, He X, Deng H, Chen Q, Lu J, Spraul M, Yu Y (2007) Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Sci 98:1678–1682. https://doi.org/10.1111/j.1349-7006.2007.00589.x

    Article  CAS  Google Scholar 

  • Fang X, Tie J, **e Y, Li Q, Zhao Q et al (2010) Detection of gastric carcinomaassociatedantigen MG7-Ag in human sera using surface plasmon resonancesensor. Cancer Epidemiol 34:648–651

    Article  CAS  Google Scholar 

  • Gaul DA, Mezencev R, Long TQ, Jones CM, Benigno BB, Gray A, Fernández FM, McDonald JF (2015) Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci Rep 5:16351, Pages 1–7. https://doi.org/10.1038/srep16351

  • Glenn D, Bucher D, Lee J et al (2018) High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature 555:351–354. https://doi.org/10.1038/nature25781

    Article  CAS  Google Scholar 

  • Goufman EI, Moshkovskii SA, Tikhonova OV, Lokhov PG, Zgoda VG, Serebryakova MV, Toropygin IY, Vlasova MA, Safarova MR, Makarov OV, Archakov AI (2006) Two-dimensional electrophoretic proteome study of serum thermostable fraction from patients with various tumor conditions. Biochem Mosc 71(4):354–360. https://doi.org/10.1134/s000629790604002x

    Article  CAS  Google Scholar 

  • Gowan SM, Hardcastle A, Hallsworth AE et al (2007) Application of meso scale technology for the measurement of phosphoproteins in human tumorxenografts. Assay Drug Dev Technol 5(3):391–401. https://doi.org/10.1089/adt.2006.044

    Article  CAS  Google Scholar 

  • Gu H, Pan Z, ** B, Asiago V, Musselman B, Raftery D (2011) Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer. Anal Chim Acta 686(1–2):57–63. https://doi.org/10.1016/j.aca.2010.11.040

    Article  CAS  Google Scholar 

  • Huang Y-C, Chung H-H, Dutkiewicz E, Chen C-L, Hsieh H-Y, Chen B-R, Wang M-Y, Hsu C-C (2019) Predicting breast cancer by paper spray ion mobility spectrometry mass spectrometry and machine learning. Anal Chem 92(2):1653–1657. https://doi.org/10.1021/acs.analchem.9b03966

    Article  CAS  Google Scholar 

  • Jurneczko E, Cruickshank F, Porrini M, Clarke DJ, Campuzano IDG, Morris M, Nikolova PV, Barran PE (2013) Probing the conformational diversity of cancer-associated mutations in p53 with ion-mobility mass spectrometry. Angew Chem Int Ed Eng 52(16):4370–4374. https://doi.org/10.1002/anie.201210015

    Article  CAS  Google Scholar 

  • Kehayias P, Jarmola A, Mosavian N et al (2017) Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip. Nat Commun 8:188, Pages 1–8. https://doi.org/10.1038/s41467-017-00266-4

  • Kreutzer L, Aichler M, Walch AK (2019) In situ metabolomics in cancer tissue by high-resolution mass spectrometry imaging. In: Fundamentals and applications of fourier transform mass spectrometry, pp 253–279. https://doi.org/10.1016/b978-0-12-814013-0.00009-0

    Chapter  Google Scholar 

  • Kumar R, Ghosh M, Kumar S, Prasad M (2020) Single cell metabolomics: a future tool to unmask cellular heterogeneity and virus-host interaction in context of emerging viral diseases. Front Microbiol 11:1152, Pages 1–16. https://doi.org/10.3389/fmicb.2020.01152

  • Lin YW, Lai HC, Lin CY et al (2006) Plasma proteomic profiling for detecting and differentiating in situ and invasive carcinomas of the uterine cervix. Int J Gynecol Cancer 16(3):1216–1224. https://doi.org/10.1111/j.1525-1438.2006.00583.x

    Article  Google Scholar 

  • Lin L, Yu Q, Yan X, Hang W, Zheng J, **ng J, Huang B (2010) Direct infusion mass spectrometry or liquid chromatography mass spectrometry for human metabonomics? A serum metabonomic study of kidney cancer. Analyst 135(11):2970–2978. https://doi.org/10.1039/c0an00265h

    Article  CAS  Google Scholar 

  • Liu X, Zhang M, Cheng X, Liu X, Sun H, Guo Z, Li J, Tang X, Wang Z, Sun W, Zhang Y, Ji Z (2020) LC-MS-based plasma metabolomics and lipidomics analyses for differential diagnosis of bladder cancer and renal cell carcinoma. Front Oncol 10:717. https://doi.org/10.3389/fonc.2020.00717

    Article  Google Scholar 

  • Lu Y, Ling S, Hegde AM, Byers LA, Coombes K, Mills GB, Akbani R (2016) Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Semin Oncol 43(4):476–483. https://doi.org/10.1053/j.seminoncol.2016.06.005

    Article  CAS  Google Scholar 

  • M’Koma AE, Blum DL, Norris JL, Koyama T, Billheimer D, Motley S, Ghiassi M, Ferdowsi N, Bhowmick I, Chang SS, Fowke JH, Caprioli RM, Bhowmick NA (2007) Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun 353(3):829–834. https://doi.org/10.1016/j.bbrc.2006.12.111

    Article  CAS  Google Scholar 

  • Mendes TPP, Pereira I, de Lima LAS, Morais CLM, Neves AC, Martin FL, Lima KMG, Vaz BG (2020) Paper spray ionization mass spectrometry as a potential tool for early diagnosis of cervical cancer. J Am Soc Mass Spectrom 31(8):1665–1672. https://doi.org/10.1021/jasms.0c00111

    Article  CAS  Google Scholar 

  • Mie M, Kai T, Le T, Cass AE, Kobatake E (2013) Selection of DNA aptamerswith affinity for pro-gastrin-releasing peptide (proGRP), a tumor marker forsmall cell lung cancer. Appl Biochem Biotechnol 169:250–255

    Article  CAS  Google Scholar 

  • Minakshi P, Kumar R, Ghosh M, Saini HM, Ranjan K, Brar B, Prasad G (2019a) Single-cell proteomics: technology and applications. In: Barh D, Azevedo V (eds) Single-cell omics, vol 1. Academic Press, Cambridge, pp 283–318. https://doi.org/10.1016/b978-0-12-814919-5.00014-2

    Chapter  Google Scholar 

  • Minakshi P, Ghosh M, Kumar R, Patki HS, Saini HM, Ranjan K et al (2019b) Single-cell metabolomics: technology and applications. In: Barh D, Azevedo V (eds) Single-cell omics, vol 1. Academic Press, Cambridge, pp 319–353. https://doi.org/10.1016/b978-0-12-814919-5.00015-4

    Chapter  Google Scholar 

  • Moka D, Vorreuther R, Schicha H, Spraul M, Humpfer E, Lipinski M, Foxall PJ, Nicholson JK, Lindon JC (1998) Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal 17(1):125–132. https://doi.org/10.1016/s0731-7085(97)00176-3

    Article  CAS  Google Scholar 

  • Munro NP, Cairns DA, Clarke P, Rogers M, Stanley AJ, Barrett JH, Harnden P, Thompson D, Eardley I, Banks RE, Knowles MA (2006) Urinary biomarker profiling in transitional cell carcinoma. Int J Cancer 119(11):2642–2650. https://doi.org/10.1002/ijc.22238

    Article  CAS  Google Scholar 

  • Ni J, Xu L, Li W, Zheng C, Wu L (2019) Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp Ther Med 18(1):188–198. https://doi.org/10.3892/etm.2019.7533

    Article  CAS  Google Scholar 

  • Nishiumi S, Kobayashi T, Kawana S, Unno Y, Sakai T, Okamoto K, Yamada Y, Sudo K, Yamaji T, Saito Y, Kanemitsu Y, TsudaOkita N, Saito H et al (2017) Investigations in the possibility of early detection of colorectal cancer by gas chromatography/triple-quadrupole mass spectrometry. Oncotarget 8:17115–17126

    Article  Google Scholar 

  • Ohshima M, Sugahara K, Kasahara K, Katakura A (2017) Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncol Rep 37(5):2727–2734. https://doi.org/10.3892/or.2017.5561

    Article  CAS  Google Scholar 

  • OncoE6â„¢ Cervical Test, Arbor Vita Corporation http://www.arborvita.com/oncoe6

  • Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    Article  CAS  Google Scholar 

  • Pirman DA, Efuet E, Ding X-P, Pan Y, Tan L, Fischer SM, DuBois RN, Yang P (2013) Changes in cancer cell metabolism revealed by direct sample analysis with MALDI mass spectrometry. PLoS One 8(4):e61379. https://doi.org/10.1371/journal.pone.0061379

    Article  CAS  Google Scholar 

  • PSA Semi-quantitative Rapid Test, CTK Biotech, Inc https://ctkbiotech.com/product/psa-semi-quantitative-rapid-test/

  • Querengesser L, Vogel HJ, Sykes BD, Marrie T, Li L, Greiner R, Clive D, Bamforth F, Dowlatabadi R (2007) HMDB: the Human metabolome database. Nucleic Acids Res 35(suppl_1):D521–D526

    Google Scholar 

  • Remy-Martin F, El Osta M, Lucchi G, Zeggari R, Leblois T, Bellon S, Ducoroy P, Boireau W (2012) Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA–MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 404(2):423–432. https://doi.org/10.1007/s00216-012-6130-4

    Article  CAS  Google Scholar 

  • Ren J, Zhang D, Liu Y, Zhang R, Fang H, Guo S, Zhou D Zhang M Xu Y, Qiu L, Li Z (2016) Simultaneous quantification of serum nonesterified and esterified fatty acids as potential biomarkers to differentiate benign lung diseases from lung cancer. Sci Rep 6:34201, Pages 1–11. https://doi.org/10.1038/srep34201

  • Ren J-L, Zhang A-H, Kong L, Wang X-J (2018) Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 8(40):22335–22350. https://doi.org/10.1039/c8ra01574k

    Article  CAS  Google Scholar 

  • Rogers MA, Clarke P, Noble J, Munro NP, Paul A, Selby PJ, Banks RE (2003) Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 63(20):6971–6983

    CAS  Google Scholar 

  • Roser M, Ritchie H (2015) Cancer. Published online at OurWorldInData.org. https://ourworldindata.org/cancer

  • Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW (2021) Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 71(4):333–358. https://doi.org/10.3322/caac.21670

    Article  Google Scholar 

  • Semreen MH, Alniss H, Cacciatore S, El-Awady R, Mousa M, Almehdi AM, El-Huneidi W, Zerbini L, Soares NC (2020) GC–MS based comparative metabolomic analysis of MCF-7 and MDA-MB-231 cancer cells treated with Tamoxifen and/or Paclitaxel. J Proteome 225:103875, Pages 1–8. https://doi.org/10.1016/j.jprot.2020.103875

  • Shang Y, Zeng Y, Zeng Y (2016) Integrated microfluidic lectin barcode platform for high-performance focusedglycomic profiling. Sci Rep 6:20297, Pages 1–11

    Google Scholar 

  • Sitter B, Sonnewald U, Spraul M, Fjösne HE, Gribbestad IS (2002) High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed 15(5):327–337. https://doi.org/10.1002/nbm.775

    Article  CAS  Google Scholar 

  • Sitter B, Bathen T, Hagen B, Arentz C, Skjeldestad FE, Gribbestad IS (2004) Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. MAGMA 16(4):174–181. https://doi.org/10.1007/s10334-003-0025-5

    Article  CAS  Google Scholar 

  • Smits J, Damron JT, Kehayias P, McDowell AF, Mosavian N, Fescenko I, Ristoff N, Laraoui A, Jarmola A, Acosta VM (2019) Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci Adv 5(7):eaaw7895, Pages 1–8. https://doi.org/10.1126/sciadv.aaw7895

  • Southam AD, Khanim FL, Hayden RE, Constantinou JK, Koczula KM, Michell RH, Viant MR, Drayson MT, Bunce CM (2015) Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-Mediated synthesis of monounsaturated fatty acids. Cancer Res 75(12):2530–2540. https://doi.org/10.1158/0008-5472.can-15-0202

    Article  CAS  Google Scholar 

  • Srivastava A, Creek DJ (2018) Discovery and validation of clinical biomarkers of cancer: a review combining metabolomics and proteomics. Proteomics 19(10):1700448, Pages 1–9. https://doi.org/10.1002/pmic.201700448

  • Sun C, Li T, Song X, Huang L, Zang Q, Xu J, Bi N, Jiao G, Hao Y, Chen Y, Zhang R, Luo Z, Li X, Wang L, Wang Z, Song Y, He J, Abliz Z (2018) Spatially resolved metabolomics to discover tumor-associated metabolic alterations. PNAS 116(1):52–57. https://doi.org/10.1073/pnas.1808950116

    Article  CAS  Google Scholar 

  • Tamborero D, Gonzalez-Perez A, Perez-Llamas C et al (2013) Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep 3:2650, Pages 1–10. https://doi.org/10.1038/srep02650

  • Teramura Y, Iwata H (2007) Label-free immunosensing for alpha-fetoproteinin human plasma using surface plasmon resonance. Anal Biochem 365:201–207

    Article  CAS  Google Scholar 

  • Tzika AA, Astrakas L, Cao H et al (2007) Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies. Int J Mol Med 20(2):199–208. https://doi.org/10.1002/nbm.88

    Article  CAS  Google Scholar 

  • Ueda K, Tatsuguchi A, Saichi N et al (2013) Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide. J Proteome Res 12(10):4497–4506. https://doi.org/10.1021/pr400547s

    Article  CAS  Google Scholar 

  • Vaisocherová H, Faca VM, Taylor AD, Hanash S, Jiang S (2009) Comparativestudy of SPR and ELISA methods based on analysis of CD166/ALCAM levelsin cancer and control human sera. Biosens Bioelectron 24:2143–2148

    Article  Google Scholar 

  • Villanueva J (2005) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Investig 116(1):271–284. https://doi.org/10.1172/jci26022

    Article  Google Scholar 

  • Villanueva J, Martorella AJ, Lawlor K, Philip J, Fleisher M, Robbins RJ, Tempst P (2006) Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age. Mol Cell Proteomics 5(10):1840–1852. https://doi.org/10.1074/mcp.m600229-mcp200

    Article  CAS  Google Scholar 

  • Wang D, Li W, Zou Q, Yin L, Du Y, Gu J, Suo J (2017) Serum metabolomic profiling of human gastric cancer and its relationship with the prognosis. Oncotarget 8:110000–110015

    Article  Google Scholar 

  • Wen H, An YJ, Xu WJ, Kang KW, Park S (2015) Real-time monitoring of cancer cell metabolism and effects of an anticancer agent using 2D in-cell NMR spectroscopy. Angew Chem Int Ed 54:5374–5377. https://doi.org/10.1002/anie.201410380

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2018). https://www.who.int/news-room/fact-sheets/detail/cancer

  • World Health Organization (WHO) (2020). https://www.who.int/cancer/resources/keyfacts/en/

  • Yang CY, Brooks E, Li Y, Denny P, Ho CM et al (2005). Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip 5:1017–1023, Pages 1–8

    Google Scholar 

  • Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, Tang H, Deng F (2007) Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 6(7):2605–2614. https://doi.org/10.1021/pr070063h

    Article  CAS  Google Scholar 

  • Yang X-H, **g Y, Wang S, Ding F, Zhang X-X, Chen S, Zhang L, Hu Q-G, Ni Y-H (2020) Integrated non-targeted and targeted metabolomics uncovers amino acid markers of oral squamous cell carcinoma. Front Oncol 10:426. https://doi.org/10.3389/fonc.2020.00426

    Article  Google Scholar 

  • Yuan J, Duan R, Yang H, Luo X, ** M (2012) Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int J Nanomedicine 7:2921–2928

    Article  CAS  Google Scholar 

  • Zhang W, Ramautar R (2021) CE-MS for metabolomics: developments and applications in the period 2018–2020. Electrophoresis 42:381–401. https://doi.org/10.1002/elps.202000203

    Article  CAS  Google Scholar 

  • Zhang L, Sevinsky CJ, Davis BM, Vertes A (2018) Single-cell mass spectrometry of subpopulations selected by fluorescence microscopy. Anal Chem 90(7):4626–4634. https://doi.org/10.1021/acs.analchem.7b05126

    Article  CAS  Google Scholar 

  • Zhou M, Guan W, Walker LD, Mezencev R, Benigno BB, Gray A, Fernández FM, McDonald JF (2010) Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol Biomark Prev 19(9):2262–2271. https://doi.org/10.1158/1055-9965.epi-10-0126

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prasad, M., Banerjee, S., Suman, Kumar, R., Buragohain, L., Ghosh, M. (2022). Proteomics and Metabolomics in Cancer Diagnosis and Therapy. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_178

Download citation

Publish with us

Policies and ethics

Navigation