Emerging Scope of Computer-Aided Drug Design in Targeting ROS in Cancer Therapy

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

The reactive oxygen species or ROS, a cumulative term for reactive oxygen containing molecules in biological system, can provide molecular signatures in diseases. Reactive oxygen species (ROS) play a fundamental role in cellular processes. Produced as a result of biological process, the ROS levels and signaling are affected in diseased state. ROS modeling using mathematical models and further improving design of scavengers or sensitizers using computer-aided drug design (CADD) are promising and powerful technologies for relatively quicker, cheaper, and successful drug discovery by essentially drop** the overall cost and time required. This chapter aims to highlight the emerging scope of computer-aided drug design and bioinformatics in targeting ROS for efficient cancer therapy. Herein, we discuss the different in vitro ROS measurement/testing methods to build predictive models. An introduction of computational-mathematical modeling approaches, mainly focusing on the simulation of ROS dynamics, is followed by the description of the software tools. The integration of omics studies and high-throughput biological data created from a wide diversity of cancer type is discussed subsequently.

Graphical Abstract

An illustration to depict various methods for (a) ROS signaling pathways and (b) ROS modeling and in silico drug design. The genome sequence and epigenomic and transcriptomic data contribute to the understanding of signaling pathways. This information when integrated with ROS modeling can aid in drug design and study ROS dynamics that can be validated using in vitro estimation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal V, Tuli HS, Varol A, Thakral F, Year MB, Sak K et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9(11):735

    CAS  Google Scholar 

  • An BC, Choi YD, Oh IJ, Kim JH, Park JI, Lee SW (2018) GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines. PLoS One 13(9):e0204170

    Article  Google Scholar 

  • Bergmann FT, Hoops S, Klahn B, Kummer U, Mendes P, Pahle J, Sahle S (2017) COPASI and its applications in biotechnology. J Biotechnol 261:215–220

    Article  CAS  Google Scholar 

  • Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. J Chem Phys 121(9):4059–4067

    Article  CAS  Google Scholar 

  • Chakraborty S, Balan M, Flynn E, Zurakowski D, Choueiri TK, Pal S (2019) Activation of c-Met in cancer cells mediates growth-promoting signals against oxidative stress through Nrf2-HO-1. Oncogene 8(2):1–12

    Google Scholar 

  • Cid TP, Garcıa JC, Alvarez FC, De Arriba G (2003) Antioxidant nutrients protect against cyclosporine A nephrotoxicity. Toxicology 189(1–2):99–111

    Google Scholar 

  • Dalle Pezze P, Le Novère N (2017) SBpipe: a collection of pipelines for automating repetitive simulation and analysis tasks. BMC Syst Biol 11(1):1–5

    Article  Google Scholar 

  • Dalle Pezze P, Nelson G, Otten EG, Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP (2014) Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol 10(8):e1003728

    Article  Google Scholar 

  • Dalmasso G, Marin Zapata PA, Brady NR, Hamacher-Brady A (2017) Agent-based modeling of mitochondria links sub-cellular dynamics to cellular homeostasis and heterogeneity. PLoS One 12(1):e0168198

    Article  Google Scholar 

  • de Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca PMM, Jorge SD, Araldi RP, Ferreira AK (2017) The roles of ROS in cancer heterogeneity and therapy. Oxidative Med Cell Longev 2017:2467940

    Article  Google Scholar 

  • Deng X, Feng N, Zheng M, Ye X, Lin H, Yu X et al (2017) PM2. 5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta Bioenerg (BBA)-Gen Sub 1861(2):112–125

    Article  CAS  Google Scholar 

  • Drawert B, Hellander A, Bales B, Banerjee D, Bellesia G, Daigle BJ Jr et al (2016) Stochastic simulation service: bridging the gap between the computational expert and the biologist. PLoS Comput Biol 12(12):e1005220

    Article  Google Scholar 

  • Echizen K, Oshima H, Nakayama M, Oshima M (2018) The inflammatory microenvironment that promotes gastrointestinal cancer development and invasion. Adv Biol Regul 68:39–45

    Article  CAS  Google Scholar 

  • Gauthier LD, Greenstein JL, Cortassa S, O’Rourke B, Winslow RL (2013) A computational model of reactive oxygen species and redox balance in cardiac mitochondria. Biophys J 105(4):1045–1056

    Article  CAS  Google Scholar 

  • Gopalakrishnan V, Kim M, An G (2013) Using an agent-based model to examine the role of dynamic bacterial virulence potential in the pathogenesis of surgical site infection. Adv Wound Care 2(9):510–526

    Article  Google Scholar 

  • Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR et al (2016) Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circ Res 119(5):e39–e75

    Article  CAS  Google Scholar 

  • Hu Y, Zhang HR, Dong L, Xu MR, Zhang L, Ding WP et al (2019) Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles. Nanoscale 11(24):11789–11807

    Article  CAS  Google Scholar 

  • Hui KF, Yeung PL, Chiang AK (2016) Induction of MAPK-and ROS-dependent autophagy and apoptosis in gastric carcinoma by combination of romidepsin and bortezomib. Oncotarget 7(4):4454

    Article  Google Scholar 

  • Kadayat TM, Kim MJ, Nam TG, Park PH, Lee ES (2014) Thieny/furanyl-hydroxyphenylpropenones as inhibitors of LPS-induced ROS and NO production in RAW 264.7 macrophages, and their structure-activity relationship study. Bull Kor Chem Soc 35(8):2481–2486

    Article  CAS  Google Scholar 

  • Kansestani AN, Mansouri K, Hemmati S, Zare ME, Moatafaei A (2019) High glucose-reduced apoptosis in human breast cancer cells is mediated by activation of NF-κB. Iran J Allergy Asthma Immunol 18(2):153–162

    Google Scholar 

  • Kembro JM, Aon MA, Winslow RL, O’Rourke B, Cortassa S (2013) Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model. Biophys J 104(2):332–343

    Article  CAS  Google Scholar 

  • Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT (2007) Improved quantitative structure–activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 15(4):1749–1770

    Article  CAS  Google Scholar 

  • Kim C, Song HS, Park H, Kim B (2018) Activation of ER stress-dependent miR-216b has a critical role in Salvia miltiorrhiza ethanol-extract-induced apoptosis in U266 and U937 cells. Int J Mol Sci 19(4):1240

    Article  Google Scholar 

  • Kolodkin AN, Sharma RP, Colangelo AM, Ignatenko A, Martorana F, Jennen D et al (2020) ROS networks: designs, aging, Parkinson’s disease and precision therapies. NPJ Syst Biol Appl 6(1):1–20

    Article  Google Scholar 

  • Kuznetsov AV, Kehrer I, Kozlov AV, Haller M, Redl H, Hermann M et al (2011) Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal Bioanal Chem 400(8):2383–2390

    Article  CAS  Google Scholar 

  • Lazo JS, Sharlow ER (2016) Drugging undruggable molecular cancer targets. Annu Rev Pharmacol Toxicol 56:23–40

    Article  CAS  Google Scholar 

  • Lee SH, Gupta MK, Bang JB, Bae H, Sung HJ (2013) Current progress in reactive oxygen species (ROS)-responsive materials for biomedical applications. Adv Healthc Mater 2(6):908–915

    Article  CAS  Google Scholar 

  • Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG et al (2019) Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol Med Rep 20(3):2339–2346

    Google Scholar 

  • Li S, Zhuang Z, Wu T, Lin JC, Liu ZX, Zhou LF et al (2018) Nicotinamide nucleotide transhydrogenase-mediated redox homeostasis promotes tumor growth and metastasis in gastric cancer. Redox Biol 18:246–255

    Article  CAS  Google Scholar 

  • Li Y, Guo F, Guan Y, Chen T, Ma K, Zhang L et al (2020) Novel anthraquinone compounds inhibit colon cancer cell proliferation via the reactive oxygen species/JNK pathway. Molecules 25(7):1672

    Article  CAS  Google Scholar 

  • Liang W, Zhang Y, Song L, Li Z (2019) 2, 3′ 4, 4′, 5-Pentachlorobiphenyl induces hepatocellular carcinoma cell proliferation through pyruvate kinase M2-dependent glycolysis. Toxicol Lett 313:108–119

    Article  CAS  Google Scholar 

  • Lim JB, Langford TF, Huang BK, Deen WM, Sikes HD (2016) A reaction-diffusion model of cytosolic hydrogen peroxide. Free Radic Biol Med 90:85–90

    Article  CAS  Google Scholar 

  • Markevich NI, Markevich LN, Hoek JB (2020) Computational modeling analysis of generation of reactive oxygen species by mitochondrial assembled and disintegrated complex II. Front Physiol 11:1212

    Article  Google Scholar 

  • Martin-Cordero C, Jose Leon-Gonzalez A, Manuel Calderon-Montano J, Burgos-Moron E, Lopez-Lazaro M (2012) Pro-oxidant natural products as anticancer agents. Curr Drug Targets 13(8):1006–1028

    Article  CAS  Google Scholar 

  • Meng Y, Chen CW, Yung MM, Sun W, Sun J, Li Z et al (2018) DUOXA1-mediated ROS production promotes cisplatin resistance by activating the ATR-Chk1 pathway in ovarian cancer. Cancer Lett 428:104–116

    Google Scholar 

  • Moraru II, Schaff JC, Slepchenko BM, Loew LM (2002) The virtual cell: an integrated modeling environment for experimental and computational cell biology. Ann N Y Acad Sci 971(1):595–596

    Article  Google Scholar 

  • Park J, Lee J, Choi C (2011) Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS One 6(8):e23211

    Article  CAS  Google Scholar 

  • Pradhan AK, Bhoopathi P, Talukdar S, Scheunemann D, Sarkar D, Cavenee WK et al (2019) MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proc Natl Acad Sci 116(12):5687–5692

    Article  CAS  Google Scholar 

  • Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhout HF (2008) A mathematical model of glutathione metabolism. Theor Biol Med Model 5(1):1–16

    Article  Google Scholar 

  • Rodrigues C, Pimpão C, Mósca AF, Coxixo AS, Lopes D, da Silva IV et al (2019) Human aquaporin-5 facilitates hydrogen peroxide permeation affecting adaption to oxidative stress and cancer cell migration. Cancer 11(7):932

    Article  Google Scholar 

  • Sarkar J, Dwivedi G, Chen Q, Sheu IE, Paich M, Chelini CM et al (2018) A long-term mechanistic computational model of physiological factors driving the onset of type 2 diabetes in an individual. PLoS One 13(2):e0192472

    Google Scholar 

  • Sarkar R, Kishida S, Kishida M, Nakamura N, Kibe T, Karmakar D et al (2019) Effect of cigarette smoke extract on mitochondrial heme-metabolism: An in vitro model of oral cancer progression. Toxicol in Vitro 60:336–346

    Article  CAS  Google Scholar 

  • Sun HF, Yang XL, Zhao Y, Tian Q, Chen MT, Zhao YY, ** W (2019) Loss of TMEM126A promotes extracellular matrix remodeling, epithelial-to-mesenchymal transition, and breast cancer metastasis by regulating mitochondrial retrograde signaling. Cancer Lett 440:189–201

    Article  Google Scholar 

  • The, I. C. G. C., of Whole, T. P. C. A., & Genomes Consortium (2020) Pan-cancer analysis of whole genomes. Nature 578(7793):82

    Article  Google Scholar 

  • Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F et al (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics (Oxford, England) 15(1):72–84

    Article  CAS  Google Scholar 

  • Vaneev AN, Gorelkin PV, Garanina AS, Lopatukhina HV, Vodopyanov SS, Alova AV et al (2020) In vitro and in vivo electrochemical measurement of reactive oxygen species after treatment with anticancer drugs. Anal Chem 92(12):8010–8014

    Article  CAS  Google Scholar 

  • Wang N, Zhan T, Ke T, Huang X, Ke D, Wang Q, Li H (2014) Increased expression of RRM2 by human papillomavirus E7 oncoprotein promotes angiogenesis in cervical cancer. Br J Cancer 110(4):1034–1044

    Article  CAS  Google Scholar 

  • Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J et al (2019) Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther 10(1):1–16

    Article  Google Scholar 

  • Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120

    Article  Google Scholar 

  • Xu Y, Cui J, Puett D (2014) Cancer bioinformatics. Springer, New York, pp 1–362

    Google Scholar 

  • Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O'Rourke B (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 6(1):e1000657. (RIRR)

    Article  Google Scholar 

  • Zhou Y, Wang Y, Zhou W, Chen T, Wu Q, Chutturghoon VK et al (2019) YAP promotes multi-drug resistance and inhibits autophagy-related cell death in hepatocellular carcinoma via the RAC1-ROS-mTOR pathway. Cancer Cell Int 19(1):1–15

    Article  Google Scholar 

  • Zhu B, Li Y, Lin Z, Zhao M, Xu T, Wang C, Deng N (2016a) Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res Lett 11(1):1–8

    Article  Google Scholar 

  • Zhu D, Shen Z, Liu J, Chen J, Liu Y, Hu C et al (2016b) The ROS-mediated activation of STAT-3/VEGF signaling is involved in the 27-hydroxycholesterol-induced angiogenesis in human breast cancer cells. Toxicol Lett 264:79–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Mishra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, D., Chaturvedi, S., Chaudhary, V., Kaul, A., Mishra, A.K. (2022). Emerging Scope of Computer-Aided Drug Design in Targeting ROS in Cancer Therapy. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_143

Download citation

Publish with us

Policies and ethics

Navigation