• 234 Accesses

Abstract

In the past decades, with the increasing volume of spatial data and development of cutting-edge techniques, several spatial models have been created to investigate complex spatial phenomena and explore spatial process (Goodchild in Geographical Data Modeling 18:401–408, 1992. Longley and Batty in Spatial analysis: Modelling in a GIS environment. Wiley, 1996. Graham in Methods in human geography, 1997. Fotheringham et al. in Quantitative geography: Perspectives on spatial data analysis. Sage, 2000. Miller and Goodchild in GeoJournal 80(4):449–461, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Geographic information science (GIScience), which is the research field that studies the general principles underlying the acquisition, management, processing, analysis, visualization, and storage of geographic data” (page 494) (Goodchild 2003).

References

  • Andrews, Jeffrey G, Radha Krishna Ganti, Martin Haenggi, Nihar **dal, and Steven Weber. 2010. A primer on spatial modeling and analysis in wireless networks. IEEE Communications Magazine 48 (11).

    Google Scholar 

  • Armstrong, Marc P. 2000. Geography and computational science.

    Google Scholar 

  • Batty, M. 1976. Urban modelling; algorithms, calibrations, predictions.

    Google Scholar 

  • Batty, Michael, Yichun **e, and Zhanli Sun. 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems 23 (3): 205–233.

    Article  Google Scholar 

  • Bergstra, James, and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research 13: 281–305.

    Google Scholar 

  • Bergstra, James, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. 2015. Hyperopt: A python library for model selection and hyperparameter optimization. Computational Science & Discovery 8 (1):014008.

    Google Scholar 

  • Bergstra, James, Dan Yamins, and David D Cox. 2013a. Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms. In Proceedings of the 12th python in science conference.

    Google Scholar 

  • Bergstra, James, Daniel Yamins, and David D. Cox. 2013b. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. ICML 1 (28): 115–123.

    Google Scholar 

  • Borcard, Daniel, François Gillet, and Pierre Legendre. 2011. Spatial analysis of ecological data. In Numerical ecology with R, 227–292. Springer.

    Google Scholar 

  • Brunsdon, Chris, and Alex Singleton. 2015. Geocomputation: A practical primer. Sage.

    Google Scholar 

  • Chapelle, Olivier, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. 2002. Choosing multiple parameters for support vector machines. Machine Learning 46 (1–3): 131–159.

    Article  Google Scholar 

  • Couclelis, Helen. 1998. Geocomputation in context. Geocomputation: A primer.

    Google Scholar 

  • Falkner, Stefan, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient hyperparameter optimization at scale.

    Google Scholar 

  • Fotheringham, A Stewart, Chris Brunsdon, and Martin Charlton. 2000. Quantitative geography: Perspectives on spatial data analysis. Sage.

    Google Scholar 

  • Gahegan, Mark. 1999. Four barriers to the development of effective exploratory visualisation tools for the geosciences. International Journal of Geographical Information Science 13 (4): 289–309.

    Article  Google Scholar 

  • Gahegan, Mark. 2003. Is inductive machine learning just another wild goose (or might it lay the golden egg)? International Journal of Geographical Information Science 17 (1): 69–92.

    Article  Google Scholar 

  • Gelfand, Alan E., Athanasios Kottas, and Steven N. MacEachern. 2005. Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association 100 (471): 1021–1035.

    Article  MathSciNet  Google Scholar 

  • Goodchild, Michael F. 1992. Computers, and Geosciences. Geographical Data Modeling 18 (4): 401–408.

    Google Scholar 

  • Goodchild, Michael F. 2003. Geographic information science and systems for environmental management. Annual Review of Environment and Resources 28.

    Google Scholar 

  • Graham, E. 1997. Philosophies underlying human geography research. In Methods in human geography, eds. R. Flowerdew and D. Martin D. Harlow: Longman.

    Google Scholar 

  • Krewski, Daniel, Michael Jerrett, Richard T Burnett, Renjun Ma, Edward Hughes, Yuanli Shi, Michelle C Turner, C Arden Pope III, George Thurston, and Eugenia E Calle. 2009. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Boston, MA: Health Effects Institute.

    Google Scholar 

  • Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research 18 (1): 6765–6816.

    MathSciNet  MATH  Google Scholar 

  • Li, **a, and Anthony Gar-On Yeh. 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science 16 (4): 323–343.

    Google Scholar 

  • Logan, John R. 2012. Making a place for space: Spatial thinking in social science. Annual Review of Sociology 38: 507–524.

    Article  Google Scholar 

  • Longley, Paul A, and Michael Batty. 1996. Spatial analysis: Modelling in a GIS environment. Wiley.

    Google Scholar 

  • Longley, Paul A, Susan Brooks, W Macmillan, and RA McDonnell. 1998. Geocomputation: A primer. Wiley.

    Google Scholar 

  • Lorenzo, Pablo Ribalta, Jakub Nalepa, Luciano Sanchez Ramos, and José Ranilla Pastor. 2017. Hyper-parameter selection in deep neural networks using parallel particle swarm optimization. In Proceedings of the genetic and evolutionary computation conference companion.

    Google Scholar 

  • Miller, Harvey J. 1999. Potential contributions of spatial analysis to geographic information systems for transportation (GIS-T). Geographical Analysis 31 (4): 373–399.

    Article  Google Scholar 

  • Miller, Harvey J, and Michael F Goodchild. 2015. Data-driven geography. GeoJournal 80(4): 449–461.

    Google Scholar 

  • Nevtipilova, Veronika, Justyna Pastwa, Mukesh Singh Boori, and Vit Vozenilek. 2014. Testing artificial neural network (ANN) for spatial interpolation. International Journal of Geology and Geosciences (JGG) 01–09. ISSN 2329 6755.

    Google Scholar 

  • Openshaw, Stan, and RJ Abrahart. 2014. GeoComputation, 2nd edn, 1–21. Boca Raton: CRC Press.

    Google Scholar 

  • Openshaw, Stan, and Robert J Abrahart. 2000. GeoComputation, vol. 24. London: Taylor & Francis.

    Google Scholar 

  • Pijanowski, Bryan C., Daniel G. Brown, Bradley A. Shellito, and Gaurav A. Manik. 2002. Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems 26 (6): 553–575.

    Article  Google Scholar 

  • Pijanowski, Bryan C., Snehal Pithadia, Bradley A. Shellito, and Konstantinos Alexandridis. 2005. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science 19 (2): 197–215.

    Article  Google Scholar 

  • Pijanowski, Bryan C., Amin Tayyebi, Jarrod Doucette, Burak K. Pekin, David Braun, and James Plourde. 2014. A big data urban growth simulation at a national scale: Configuring the GIS and neural network based land transformation model to run in a High Performance Computing (HPC) environment. Environmental Modelling & Software 51: 250–268.

    Article  Google Scholar 

  • Shannon, Robert E. 1975. Systems simulation; the art and science.

    Google Scholar 

  • Sui, D.Z., and R.C. Maggio. 1999. Integrating GIS with hydrological modeling: Practices, problems, and prospects. Computers, Environment and Urban Systems 23 (1): 33–51.

    Article  Google Scholar 

  • Tang, Wenwu, Wenpeng Feng, **g Deng, Meijuan Jia, and Huifang Zuo. 2018. Parallel Computing for Geocomputational Modeling. In GeoComputational analysis and modeling of regional systems, 37–54. Springer.

    Google Scholar 

  • Thornton, Chris, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining.

    Google Scholar 

  • Tobler, Waldo R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46 (sup1): 234–240.

    Article  Google Scholar 

  • Wang, Shaowen. 2010. A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers 100 (3): 535–557.

    Article  Google Scholar 

  • Wang, Shaowen, and Yan Liu. 2009. TeraGrid GIScience gateway: Bridging cyberinfrastructure and GIScience. International Journal of Geographical Information Science 23 (5): 631–656.

    Article  Google Scholar 

  • Waters, Nigel. 2017. Tobler’s first law of geography. https://doi.org/10.1002/9781118786352.wbieg1011.

  • Yang, Chaowei, Robert Raskin, Michael Goodchild, and Mark Gahegan. 2010. Geospatial cyberinfrastructure: Past, present and future. Computers, Environment and Urban Systems 34 (4): 264–277.

    Article  Google Scholar 

  • Yeh, Anthony Gar-On, and **a Li. 2001. A constrained CA model for the simulation and planning of sustainable urban forms by using GIS. Environment Planning B: Planning Design 28(5): 733–753.

    Google Scholar 

  • Zheng, Minrui, Wenwu Tang, and **ang Zhao. 2019. Hyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing. International Journal of Geographical Information Science. https://doi.org/10.1080/13658816.2018.1530355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minrui Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, M. (2021). Introduction. In: Spatially Explicit Hyperparameter Optimization for Neural Networks. Springer, Singapore. https://doi.org/10.1007/978-981-16-5399-5_1

Download citation

Publish with us

Policies and ethics

Navigation