Hydrogel Scaffolds Based on Alginate, Gelatin, and 2-Hydroxyethyl Methacrylate for Tissue Regeneration

  • Chapter
  • First Online:
Marine Biomaterials

Abstract

The design of bioactive scaffolding materials with favorable properties is paramount for successful application in biomedical engineering. Polymeric hydrogels attract significant attention as leading candidates for scaffold engineering due to their specific compositional and structural similarities to the natural extracellular matrix. The ability to control porosity, surface morphology, and size of hydrogel scaffolds has created new approaches to overcome various issues in tissue engineering such as vascularization, tissue architecture, and simultaneous multiple cells seeding. This review imparts an overview of hydrogel scaffolds based on synthetic and natural polymeric components (alginate, gelatin, and 2-hydroxyethyl methacrylate). We made hydrogel scaffolds with unique properties. Their in vitro and in vivo biological response, morphology, mechanical properties, porosity, hydrophilicity, and degradability were tested to find optimal patterns of tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldana AA, Abraham GA (2017) Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 523:441–453

    Article  CAS  PubMed  Google Scholar 

  • Alves da Silva M, Martins A, Costa-Pinto AR, Monteiro N, Faria S, Reis RL, Neves NM (2017) Electrospun nanofibrous meshes cultured with Wharton’s jelly stem cell: an alternative for cartilage regeneration, without the need of growth factors. Biotechnol J. https://doi.org/10.1002/biot.201700073

  • Amado S, Morouço P, Pascoal-Faria P, Alves N (2017) Tailoring Bioengineered scaffolds for regenerative medicine. In: Dobrzański LA (ed) Biomaterials in regenerative medicine. IntechOpen, London. https://doi.org/10.5772/intechopen.69857. Available from: https://www.intechopen.com/chapters/56531

    Chapter  Google Scholar 

  • Annabi N, Nichol JW, Zhong X, Ji C et al (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B16:371–383

    Article  CAS  Google Scholar 

  • Atala A (2008) Advances in tissue and organ replacement. Curr Stem Cell Res Ther 3:21–31

    Article  CAS  PubMed  Google Scholar 

  • Atala A (2012) Regenerative medicine strategies. J Pediatr Surg 47:17–28

    Article  PubMed  Google Scholar 

  • Babić MM, Tomić SLj (2020) Semi-interpenetrating networks based on (Meth)acrylate, itaconic acid, and poly(vinyl Pyrrolidone) hydrogels for biomedical applications. In: Jana S, Jana S (eds) Interpenetrating polymer network: biomedical applications. Springer, Singapore, pp 263–288

    Chapter  Google Scholar 

  • Babitha S, Rachita L, Karthikeyan K, Shoba E, Janani I, Poornima B et al (2017) Electrospun protein nanofibers in healthcare: a review. Int J Pharm 523:52–90

    Article  CAS  PubMed  Google Scholar 

  • Bailey AM, Mendicino M, Au P (2014) An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat Biotechnol 32:721–723

    Article  CAS  PubMed  Google Scholar 

  • Bajpai AK, Kankane S (2007) Preparation and characterization of macroporous poly(2-hydroxyethyl methacrylate)-based biomaterials: water sorption property and in vitro blood compatibility. J Appl Polym Sci 104:1559–1571

    Article  CAS  Google Scholar 

  • Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, Burdick JA, Chen CS (2015) Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 14:1262–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhsheshi-Rad HR, Hadisi Z, Hamzah E, Ismail AF, Aziz M, Kashefian M (2017) Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy. Mater Lett 207:179–182

    Article  CAS  Google Scholar 

  • Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S (2008) Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol 154:1400–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behravesh E, Mikos AG (2003) Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels. J Biomed Mater Res A 66:698–706

    Article  PubMed  CAS  Google Scholar 

  • Bettinger CJ, Borenstein JT, Langer R (2007) Micro- and nanofabricated scaffolds. In: Lanza R, Langer R, Vacanti J (eds) Principles of tissue engineering, 3rd edn. Elsevier Academic Press, San Diego, CA, pp 341–358

    Chapter  Google Scholar 

  • Bigi A, Panzavolta S, Rovery N (1998) Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials 19:739–744

  • Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW, Vandenburgh HH, Mooney DJ (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107:3287–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyan BD, Lohmann CH, Romero J, Schwartz Z (1999) Bone and cartilage tissue engineering. Clin Plast Surg 26:629–645

    Article  CAS  PubMed  Google Scholar 

  • Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29:1517–1524

    Article  CAS  PubMed  Google Scholar 

  • Bryant SJ, Anseth KS (2001) The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22:619–626

    Article  CAS  PubMed  Google Scholar 

  • Bryant SJ, Davis-Arehart KA, Luo N, Shoemaker RK, Arthur JA, Anseth KS (2004) Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules 37:6726–6733

    Article  CAS  Google Scholar 

  • Budama-Kilinc Y, Cakir-Koc R, Aslan B, Özkan B, Mutlu H, Üstün E (2017) Hydrogels in regenerative medicine. In: Dobrzański LA (ed) Biomaterials in regenerative medicine. IntechOpen. https://doi.org/10.5772/intechopen.70409

    Chapter  Google Scholar 

  • Cabodi M, Choi NW, Gleghorn JP, Lee CSD, Bonassar LJ, Stroock AD (2005) A microfluidic biomaterial. J Am Chem Soc 127:13788–13789

    Article  CAS  PubMed  Google Scholar 

  • Camarero-Espinosa S, Cooper-White J (2016) Tailoring biomaterial scaffolds for osteochondral repair. Int J Pharm 523:476–489

    Article  PubMed  CAS  Google Scholar 

  • Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L (2001) Bioartificial polymeric materials based on polysaccharides. Aust J Biol Sci 12:267–281

    CAS  Google Scholar 

  • Chang H-I and Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D (ed) Regenerative medicine and tissue engineering-cells and biomaterials, BoD – books on demand. https://doi.org/10.5772/21983

  • Chen LJ, Wang M (2002) Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials 23:2631–2639

    Article  CAS  PubMed  Google Scholar 

  • Cheung DYC, Duan B, Butcher JT (2015) Bioprinting of cardiac tissues. In: Atala A, Yoo JJ (eds) Essentials of 3D biofabrication and translation. Academic Press, Elsevier Science, London, pp 351–370

    Chapter  Google Scholar 

  • Cho SJ, Jung SM, Kang M, Shin HS, Youk JH (2015) Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer 69:95–102. https://doi.org/10.1016/j.polymer.2015.05.037

    Article  CAS  Google Scholar 

  • Choi K, Kuhn J, Ciarelli M, Goldstein S (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6:1961–1976

    Article  CAS  PubMed  Google Scholar 

  • Cosson S, Otte EA, Hezaveh H, Cooper-White JJ (2015) Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 4:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Subuddhi U (2020) Alginate-based interpenetrating network carriers for biomedical applications. In: Jana S, Jana S (eds) Interpenetrating polymer network: biomedical applications. Springer, Singapore, pp 79–118

    Chapter  Google Scholar 

  • Diamond DA, Caldamone AA (1999) Endoscopic treatment of vesicoureteric reflux in children using autologous chondrocytes-preliminary results. J Urol 162:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Diedwardo CA, Petrosko P, Acarturk TO, Dimilia PA, Laframboise WA, Johnson PC (1999) Muscle tissue engineering. Clin Plast Surg 26:647–656

    Article  CAS  PubMed  Google Scholar 

  • Dzobo K, Turnley T, Wishart A et al (2016) Fibroblast-derived extracellular matrix induces chondrogenic differentiation in human adipose-derived mesenchymal stromal/stem cells in vitro. Int J Mol Sci. https://doi.org/10.3390/ijms17081259

  • Eaglstein WH, Falanga V (1998) Tissue engineering and the development of Apligraf a human skin equivalent. AdvWound Care 11:1–8

    CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Evans ND, Gentleman E, Chen X, Roberts CJ, Polak JM, Stevens MM (2010) Extracellular matrix-mediated osteogenic differentiation of murine embryonic stem cells. Biomaterials 31:3244–3252

    Article  CAS  PubMed  Google Scholar 

  • Eyrich D, Brandl F, Appel B et al (2007) Long-term stable fibrin gels for cartilage engineering. Biomaterials 28:55–65

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Starly B, Sun W (2005) Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. CAD Comput Aided Design 37:65–72

    Article  Google Scholar 

  • Fiedler T, Videira AC, Bártolo P, Strauch M, Murch GE, Ferreira JMF (2015) On the mechanical properties of PLC-bioactive glass scaffolds fabricated via BioExtrusion. Mater Sci Eng C 57:288–293

    Article  CAS  Google Scholar 

  • Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotechnol Lett 38:203–211

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Tang F, Gong G, Zhang J, Hoi MPM, Lee SMY, Wang R (2017) pH-responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale 9:12533–12542

    Article  CAS  PubMed  Google Scholar 

  • Germain L, Auger FA, Grandbois E et al (1999) Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67:140–147

    Article  CAS  PubMed  Google Scholar 

  • Goncalves AI, Rodrigues MT, Gomes ME (2017) Tissue engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomater 63:110–122

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Avci-Adali M, Alarcin E et al (2017) Development of hydrogels for regenerative engineering. Biotechnol J 12(5):1600394. https://doi.org/10.1002/biot.201600394

    Article  CAS  Google Scholar 

  • Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347

    Article  CAS  PubMed  Google Scholar 

  • Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Suzuki Y, Suzuki K, Nakashima T, Tanihara M, Ide C (2005) Peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds. J Mater Sci Mater Med 16:503–509

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15

    Article  CAS  PubMed  Google Scholar 

  • Hejcl A, Urdzikova L, Sedy J, Lesny P, Pradny M, Michalek J, Burian M, Hajek M, Zamecnik J, Jendelova P, Sykova E (2008) Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat. J Neurosurg Spine 8:67–73

    Article  PubMed  Google Scholar 

  • Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1727

    Article  CAS  Google Scholar 

  • Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  CAS  PubMed  Google Scholar 

  • Hill E, Boontheekul T, Mooney DJ (2006a) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Hill E, Boontheekul T, Mooney DJ (2006b) Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci U S A 103:2494–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman AS (2001) Hydrogels for biomedical applications. Ann N Y Acad Sci 944:62–73

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  CAS  PubMed  Google Scholar 

  • Hubbell JA (1999) Bioactive biomaterials. Curr Opin Biotechnol 10:123–129

    Article  CAS  PubMed  Google Scholar 

  • Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomat Sci Polym E 12:107–124

    Article  CAS  Google Scholar 

  • Jhon MS, Andrade JD (1973) Water and hydrogels. J Biomed Mater Res 7:509–522

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Ghosh K, Shu XZ, Li B, Sokolov JC, Prestwich GD, Clark RAF, Rafailovich MH (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792

    Article  CAS  PubMed  Google Scholar 

  • Joodaki H, Panzer MB (2018) Skin mechanical properties and modeling: a review. Proc Inst Mech Eng H. https://doi.org/10.1177/0954411918759801

  • Kariduraganavar MY (2016) Advances in polymers and tissue engineering scaffolds. In: Inamuddin (ed) Green polymer composites technology properties and applications. CRC Press, Boca Raton, FL, pp 343–354

    Google Scholar 

  • Kataoka K, Suzuki Y, Kitada M, Hashimoto T, Chou H, Bai HL, Ohta M, Wu S, Suzuki K, Ide C (2004) Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng 10:493–504

    Article  CAS  PubMed  Google Scholar 

  • Ker EDF, Nain AS, Weiss LE, Wang J, Suhan J, Amon CH et al (2011) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097–8107

    Article  CAS  PubMed  Google Scholar 

  • Kershen RT, Fefer SD, Atala A (2000) Tissue-engineered therapies for the treatment of urinary incontinence and vesicoureteral reflux. World J Urol 18:51–55

    Article  CAS  PubMed  Google Scholar 

  • Khang G (2017) Biomaterials and manufacturing methods for scaffolds in regenerative medicine: update 2015. In: Khang G (ed) Handbook of intelligent scaffolds for tissue engineering and regenerative medicine. Taylor & Francis Group, Singapore, pp 1–53

    Google Scholar 

  • Kim UJ, Park J, Li C, ** HJ, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792

    Article  CAS  PubMed  Google Scholar 

  • Kim H-W, Kim H-E, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221–5230

    Article  CAS  PubMed  Google Scholar 

  • Kim T-R, Kim M-S, Goh TS, Lee JS, Kim YH, Yoon S-Y, Lee C-S (2019) Evaluation of structural and mechanical properties of porous artificial bone scaffolds fabricated via advanced TBA-based freeze-gel casting technique. Appl Sci 9(9):1965. https://doi.org/10.3390/app9091965

    Article  CAS  Google Scholar 

  • Klawitter J, Hulbert S (1971) Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res 5:161–229

    Article  Google Scholar 

  • Knoepfler PS (2015) From bench to FDA to bedside: us regulatory trends for new stem cell therapies. Adv Drug Del Rev 82-83:192–196

    Article  CAS  Google Scholar 

  • Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24:4023–4029

    Article  CAS  PubMed  Google Scholar 

  • Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20:822–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov PV, Burdygina GI (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24:651–666

    Article  CAS  Google Scholar 

  • Kubinova S, Horak D, Hejcl A, Plichta Z, Kotek J, Proks V, Forostyak S, Sykova E (2015) SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J Tissue Eng Regen Med 9:1298–1309

    Article  CAS  PubMed  Google Scholar 

  • Kuo W-T, Huang H-Y, Chou M-J, Wu M-C, Huang Y-Y (2011) Surface modification of gelatin nanoparticles with polyethyleneimine as gene vector. J Nanomater 2011:1–5

    Google Scholar 

  • Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  • Laurencin CT, Khan Y (2012) Regenerative engineering. Sci Transl Med 4:160ed9

    Article  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Peters MC, Anderson KW, Mooney DJ (2000) Controlled growth factor release from synthetic extracellular matrices. Nature 408:998–1000

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA, Langer R (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

    Article  CAS  PubMed  Google Scholar 

  • Lien SM, Ko LY, Huang TJ (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5:670–679

    Article  CAS  PubMed  Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Morouço P, Levato R, Melchels F, Malda J (2017) Organ biofabrication. Comprehen Biomater II 5:236–266

    Google Scholar 

  • Lim Y-S, Ok Y-J, Hwang S-Y, Kwak J-Y, Yoon S (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17:467

    Article  CAS  PubMed Central  Google Scholar 

  • Lin LJ, Chiang CJ, Chao YP, Wang SD, Chiou YT, Wang HY et al (2016) Development of alginate microspheres containing chuanxiong for oral administration to adult zebrafish. BioMed Res Int. https://doi.org/10.1155/2016/4013071

  • López-Ruiz E, Jiménez G, García MÁ, Antich C, Boulaiz H, Marchal JA, Peran M (2016) Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what’s new? Expert Opin Ther Pat 26:877–890

    Article  PubMed  CAS  Google Scholar 

  • Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40

    Article  CAS  Google Scholar 

  • MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731

    Article  CAS  PubMed  Google Scholar 

  • Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1–5

    Article  PubMed  Google Scholar 

  • Mayer JE, Shin’oka T, Shum-Tim D (1997) Tissue engineering of cardiovascular structures. Curr Opin Cardiol 12:528–532

    Article  PubMed  Google Scholar 

  • Mayer J, Karamuk E, Akaike T, Wintermantel E (2000) Matrices for tissue engineering-scaffold structure for a bioartificial liver support system. J Control Release 64:81–90

    Article  CAS  PubMed  Google Scholar 

  • Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad J, Shenaq J, Rabinovsky E, Shenaq S (2000) Modulation of peripheral nerve regeneration: a tissue engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 105:660–666

    Article  CAS  PubMed  Google Scholar 

  • Mohammadzadehmoghadam S, Dong Y (2019) Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor. Front Mater 6:91. https://doi.org/10.3389/fmats.2019.00091

    Article  Google Scholar 

  • Nagarajan S, Pochat-Bohatier C, Teyssier C, Balme S, Miele P, Kalkura N, Cavaillès V, Bechelany M (2016a) Design of graphene oxide/gelatin electrospun nanocomposite fibers for tissue engineering applications. RSC Adv 6:109150–109156

    Article  CAS  Google Scholar 

  • Nagarajan S, Soussan L, Bechelany M, Teyssier C, Cavaillès V, Pochat-Bohatier C, Miele P, Kalkura N, Janot JM, Balme S (2016b) Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. J Mater Chem B 4:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Belaid H, Pochat-Bohatier C, Teyssier C, Iatsunskyi I, Coy E, Balme S, Cornu D, Miele P, Kalkura NS, Cavailles V, Bechelany M (2017) Design of boron nitride/gelatin electrospun nanofibers for bone tissue engineering. ACS Appl Mater Interfaces 9:33695–33706

    Article  CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Nair P, Thottappillil N (2015) Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag 11:79–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17:149–155

    Article  CAS  PubMed  Google Scholar 

  • OECD, OECD Guidelines for the Testing of Chemicals (2013) Test No 236

    Google Scholar 

  • Onal U, Langdon C (2000) Characterization of two microparticle types for delivery of food to altricial fish larvae. Aquac Nutr 6:159–170

    Article  Google Scholar 

  • Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Parker GJM, Wheeler-Kingshott CAM, Barker GJ (2002) Diffusion tensor imaging. IEEE T Med Imaging 21:505–512

    Article  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, WeaverVM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11:1–35

    Article  CAS  Google Scholar 

  • Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murty N, Sulchek TA, Barker TH, Garcia AJ (2012) Maleimide cross-linked bioactive peg hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70

    Article  CAS  PubMed  Google Scholar 

  • Pina S, Canadas RF, Jimenez G, Peran M, Marchal JA, Reis RL, Oliveira JM (2017) Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs 204:150–163

    Article  CAS  PubMed  Google Scholar 

  • Piskin E (1994) Biodegradable polymers as biomaterials. J Biomat Sci Polym E 6:775–795

    Article  Google Scholar 

  • Poursamar SA, Lehner AN, Azami M, Ebrahimi-Barough S, Samadikuchaksaraei A, Antunes APM (2016) The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C 63:1–9

    Article  CAS  Google Scholar 

  • Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569

    CAS  PubMed  Google Scholar 

  • Prasitsilp M, Siriwittayakorn T, Molloy R, Suebsanit N, Siriwittayakorn P, Veeranondha S (2003) Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. J Mater Sci Mater Med 14:595–600

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  CAS  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R (2002) Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass® for tissue engineering applications. Biomaterials 23:3871–3878

    Article  CAS  PubMed  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mat Sci Eng C Bio S 78:1246–1262

    Article  CAS  Google Scholar 

  • Sadeghi M, Heidari B (2011) Crosslinked graft copolymer of methacrylic acid and gelatin as a novel hydrogel with pHresponsiveness properties. Materials 4:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadtler K, Singh A, Wolf MT, Wang T, Pardoll DM, Elisseeff JH (2016) Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat Rev Mater 1:16040

    Article  CAS  Google Scholar 

  • Sajkiewicz P, Kołbuk D (2014) Electrospinning of gelatin for tissue engineering-molecular conformation as one of the overlooked problems. J Biomater Sci Polym Ed 25:2009–2022

    Article  CAS  PubMed  Google Scholar 

  • Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532

    Article  CAS  PubMed  Google Scholar 

  • Schmedlen RH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332

    Article  CAS  PubMed  Google Scholar 

  • Sculean A, Auschill TM, Donos N, Brecx M, Arweiler NB (2001) Effect of an enamel matrix protein (Emdogain®) on ex vivo dental plaque vitality. J Clin Periodontol 28:1074–1078

    Article  CAS  PubMed  Google Scholar 

  • Seol YJ, Park DY, Park JY, Kim SW, Park SJ, Cho DW (2013) A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol Bioeng 110:1444–1455

    Article  CAS  PubMed  Google Scholar 

  • Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng 64:416–427

    Article  CAS  Google Scholar 

  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeds KA, Grinstaff MW (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res 54:115–121

    Article  CAS  PubMed  Google Scholar 

  • Solchaga LA, Gao J, Dennis JE et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347

    Article  CAS  PubMed  Google Scholar 

  • Soon-Shiong P, Heintz RE (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951

    Article  CAS  PubMed  Google Scholar 

  • Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Appl Biochem Biotechnol 39:29–47

    Article  CAS  Google Scholar 

  • Sung H-J, Meredith C, Johnso C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25:5735–5742

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Suzuki Y, Tanihara M, Ohnishi K, Hashimoto T, Endo K, Nishimura Y (2000) Reconstruction of rat peripheral nerve gap without sutures using freeze-dried alginate gel. J Biomed Mater Res 49:528–533

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9:5–15

    Article  Google Scholar 

  • Taddei P, Chiono V, Anghileri A, Vozzi G, Freddi G, Ciardelli G (2013) Silk fibroin/gelatin blend films crosslinked with enzymes for biomedical applications. Macromol Biosci 13:1492–1510

    Article  CAS  PubMed  Google Scholar 

  • Tang XL, Li Q, Rokosh G, Sanganalmath SH, Chen N, Ou Q, Stowers H, Hunt G, Bolli R (2016) Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res 118:1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas LV, Nair PD (2012) Influence of mechanical stimulation in the development of a medial equivalent tissue-engineered vascular construct using a gelatin-g-vinyl acetate co-polymer scaffold. J Biomater Sci Polym Ed 23:2069–2087

    Article  CAS  PubMed  Google Scholar 

  • Tomić SLj, Vuković JS (2020) Antimicrobial properties of (meth)acrylate-based hydrogels. In: Paquette N (ed) An introduction to antibacterial properties. Nova Science Publishers, New York. https://novapublishers.com/shop/an-introduction-to-antibacterialproperties/

    Google Scholar 

  • Tomić SLj, Babić MM, Djokić L, Pavić A, Nikodinović-Runić J (2020) Effect of composition and method of preparation of 2-hydroxyethyl methacrylate/gelatin hydrogels on biological in vitro (cell line) and in vivo (zebrafish) properties. J Polym Res 27(10):1–8. https://doi.org/10.1007/s10965-020-02219-w

    Article  Google Scholar 

  • Tran TT, Hamid ZA, Cheong KY (2018) A review of mechanical properties of scaffold in tissue engineering: Aloe vera composites. J Phys Conf Ser 1082:012080

    Article  CAS  Google Scholar 

  • Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin- loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579

    Article  CAS  PubMed  Google Scholar 

  • Tziampazis E, Sambanis A (1995) Tissue engineering of a bioartificial pancreas: modeling the cell environment and device function. Biotechnol Prog 11:115–126

    Article  CAS  PubMed  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34

    Article  Google Scholar 

  • Wade RJ, Bassin EJ, Gramlich WM, Burdick JA (2015) Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv Mater 27:1356–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DG, Rosenblatt J (2003) Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev 55:1631–1649

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Nune KC, Misra RDK (2016) The functional response of alginate-gelatin- nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151

    Article  CAS  PubMed  Google Scholar 

  • Wongputtaraksa T, Ratanavaraporn J, Pichyangkura R, Damrongsakkul S (2012) Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res Part B Appl Biomater 100:2307–2315

    Article  CAS  Google Scholar 

  • Yang C, DelRio FW, Ma H, Killaars AR, Basta LP, Kyburz KA, Anseth KS (2016) Spatially patterned matrix elasticity directs stem cell fate. Proc Natl Acad Sci U S A 113:E4439–E4445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yannas IV (2004) Classes of materials used in medicine: natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons J (eds) Biomaterials science-an introduction to materialsin medicine. Elsevier Academic Press, San Diego, CA, pp 127–136

    Google Scholar 

  • Yannas I, Lee E, Orgill D, Skrabut E, Murphy G (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86:933–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci UK 3:231–245

    Article  CAS  Google Scholar 

  • Żak M, Kuropka P, Kobielarz M, Dudek A, Kaleta-Kuratewicz K, Szotek S (2011) Determination of the mechanical properties of the skin of pig foetuses with respect to its structure. Acta Bioeng Biomech 13:37–43

    PubMed  Google Scholar 

  • Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47:2911–2917

    Article  CAS  Google Scholar 

  • Zhang H, Zhou L, Zhang W (2014) Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev 20(5):492–502. https://doi.org/10.1089/ten.TEB.2013.0452

    Article  CAS  PubMed  Google Scholar 

  • Zhao XH, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci U S A 108:67–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the SCOPES program of the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation [Grant No IZ73ZO_152327]. This work is supported by the Ministry for Education, Science, and Technological Development of the Republic of Serbia (Contracts Nos. 451-03-9/2021-14/172062 and 451-03-9/2021-14/172026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonida Lj. Tomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomić, S.L., Vukomanović, M., Nikodinović-Runić, J., Babić, M.M., Vuković, J.S. (2022). Hydrogel Scaffolds Based on Alginate, Gelatin, and 2-Hydroxyethyl Methacrylate for Tissue Regeneration. In: Jana, S., Jana, S. (eds) Marine Biomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-5374-2_6

Download citation

Publish with us

Policies and ethics

Navigation