An Improved Reinforcement Learning for Security-Constrained Economic Dispatch of Battery Energy Storage in Microgrids

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

  • 1858 Accesses

Abstract

Battery energy storage systems are widely used in microgrids integrated with volatile energy resources for their ability in peak load shifting. Security constrained economic dispatch over the system’s lifecycle is a constrained multi-period stochastic optimization problem, which is intractable. We propose an improved actor-critic-based reinforcement learning combined with a protection layer security control method for this issue, where the distributional critic net is applied to estimate the expected total reward value of a period more accurately, and the policy net with a mask action layer is used to make secure and real-time decision. Additionally, we propose a protection layer to assist the policy net as a secondary control to prevent the unsafe state of microgrids due to the trial-and-error learning of reinforcement learning. Numerical test results show the proposed algorithm can perform better than the conventional economic dispatch and other reinforcement learning algorithms while guaranteeing safe operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Science & Business Media (2011). 10.1007/978-1-4614-0237-4

    Google Scholar 

  2. Carpinelli, G., Fazio, D., Rita, A., Khormali, S., Mottola, F.: Optimal sizing of battery storage systems for industrial applications when uncertainties exist. Energies 7, 130–149 (2014)

    Google Scholar 

  3. Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. Adv. Neural Inform. Process. Syst. 30, 4299–4307 (2017)

    Google Scholar 

  4. Divya, K., Østergaard, J.: Battery energy storage technology for power systems–an overview. Electr. Power Syst. Res. 79(4), 511–520 (2009)

    Article  Google Scholar 

  5. Eseye, A.T., Lehtonen, M., Tukia, T., Uimonen, S., Millar, R.J.: Optimal energy trading for renewable energy integrated building microgrids containing electric vehicles and energy storage batteries. IEEE Access 7, 106092–106101 (2019)

    Article  Google Scholar 

  6. Hill, C.A., Such, M.C., Chen, D., Gonzalez, J., Grady, W.M.: Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 3(2), 850–857 (2012)

    Article  Google Scholar 

  7. Huang, J., Wu, F., Precup, D., Cai, Y.: Learning safe policies with expert guidance. In: Advances in Neural Information Processing Systems, pp. 9105–9114 (2018)

    Google Scholar 

  8. Keirstead, J., Jennings, M., Sivakumar, A.: A review of urban energy system models: approaches, challenges and opportunities. Renew. Sustain. Energy Rev. 16(6), 3847–3866 (2012)

    Article  Google Scholar 

  9. Lambert, T., Gilman, P., Lilienthal, P.: Micropower system modeling with homer. Integr. Altern. Sour. Energy 1(1), 379–385 (2006)

    Article  Google Scholar 

  10. Liu, C., Wang, X., Wu, X., Guo, J.: Economic scheduling model of microgrid considering the lifetime of batteries. IET Gener. Trans. Distrib. 11(3), 759–767 (2017)

    Article  Google Scholar 

  11. Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energ. 137, 511–536 (2015)

    Article  Google Scholar 

  12. Ma, T., Yang, H., Lu, L.: A feasibility study of a stand-alone hybrid solar-wind-battery system for a remote island. Appl. Energ. 121, 149–158 (2014)

    Article  Google Scholar 

  13. Manwell, J.F., McGowan, J.G.: Lead acid battery storage model for hybrid energy systems. Solar Energ. 50(5), 399–405 (1993)

    Article  Google Scholar 

  14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. ar**v preprint ar**v:1312.5602 (2013)

  15. Nair, N.K.C., Garimella, N.: Battery energy storage systems: assessment for small-scale renewable energy integration. Energ. Build. 42(11), 2124–2130 (2010)

    Article  Google Scholar 

  16. Nechyba, M.: Maximum-likelihood estimation for mixture models: the em algorithm. EEL6935 Fall (2001)

    Google Scholar 

  17. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. ar**v preprint ar**v:1506.02438 (2015)

  18. Shang, Y., et al.: Stochastic dispatch of energy storage in microgrids: an augmented reinforcement learning approach. Appl. Energ. 261, 114423 (2020)

    Google Scholar 

  19. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Google Scholar 

  20. Vinyals, O., et al.: Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 575(7782), 350–354 (2019)

    Article  Google Scholar 

  21. Wu, J., Yan, J., Jia, H., Hatziargyriou, N., Djilali, N., Sun, H.: Integrated energy systems. Appl. Energ. 167, 155–157 (2016)

    Article  Google Scholar 

  22. Zha, Z.Y., Wang, B., Tang, X.S.: Evaluate, explain, and explore the state more exactly: an improved actor-critic algorithm for complex environment. Neural Comput. Appl. 4, 1–12 (2021)

    Google Scholar 

  23. Zhang, C., Wu, J., Zhou, Y., Cheng, M., Long, C.: Peer-to-peer energy trading in a microgrid. Appl. Energ. 220, 1–12 (2018)

    Article  Google Scholar 

  24. Zia, M.F., Elbouchikhi, E., Benbouzid, M.: Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl. Energ. 222, 1033–1055 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This research is surpported by state grid corporation of China headquarters science and technology project (grant number: 5100-202099522A-0-0-00)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zha, Z., Wang, B., Fan, H., Liu, L. (2021). An Improved Reinforcement Learning for Security-Constrained Economic Dispatch of Battery Energy Storage in Microgrids. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation