Electron Backscatter Diffraction Technique: Fundamentals to Applications

  • Chapter
  • First Online:
Electron Microscopy in Science and Engineering

Part of the book series: IITK Directions ((IITKD,volume 6))

  • 1037 Accesses

Abstract

Scanning electron microscopy (SEM) has always been an essential tool for the qualitative analysis of microstructure of any material. With the advent of SEM-based techniques like energy-dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD), extensive quantitative characterization of the microstructure of a material has also become possible. In principle, EBSD technique gathers only the crystal orientation data of each and every scanned point; however, this orientation data contains significant information in itself and it has become a transformative technique for the characterization of crystallographic materials. First and foremost, orientation information allows one to ascertain the presence and spatial distribution of various phases in a material. With the orientation data, one can easily obtain quantitative information about grain size, morphology, and phase fractions. Orientation information also allows one to extract misorientation data, which in turn provides details about various types of grain and phase boundaries in the material. Orientation data has also enabled researchers to extract micro-textural information about the material, which includes, but not limited to, pole figures and orientation distribution function (ODF). This paper will give a brief glimpse of the capability of this, now ubiquitous, technique for microstructural and textural characterization of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abolghasem S, Basu S, Shekhar S, Cai J, Shankar M (2012) Map** subgrain sizes resulting from severe simple shear deformation. Acta Mater 60(1):376–386

    Article  Google Scholar 

  • Ahmed J, Wilkinson AJ, Roberts SG (1997) Characterizing dislocation structures in bulk fatigued copper single crystals using electron channelling contrast imaging (ECCI). Philos Mag Lett 76(4):237–246

    Article  Google Scholar 

  • Al-Samarai RA, Haftirman KRA, Al-Douri Y (2012) The influence of roughness on the wear and friction coefficient under dry and lubricated sliding. Int J Sci Eng Res 3(4):1–6

    Google Scholar 

  • Bate PS, Knutsen RD, Brough I, Humphreys FJ (2005) The characterization of low-angle boundaries by EBSD. J Microsc 220(1):36–46

    Article  MathSciNet  Google Scholar 

  • Bell TH, Etheridge MA (1976) The deformation and recrystallization of quartz in a mylonite zone. Cent Aust Tectonophysics 32(3):235–267

    Article  Google Scholar 

  • Berger D, Niedrig H (1999) Complete angular distribution of electrons backscattered from tilted multicomponent specimens. Scanning 21(3):187–190

    Article  Google Scholar 

  • Brandon D (1966) The structure of high-angle grain boundaries. Acta Metall 14(11):1479–1484

    Article  Google Scholar 

  • Brokman A, Balluffi RW (1981) Coincidence lattice model for the structure and energy of grain boundaries. Acta Metall 29(10):1703–1719

    Article  Google Scholar 

  • Brough I, Bate PS, Humphreys FJ (2006) Optimising the angular resolution of EBSD. Mater Sci Technol 22(11):1279–1286

    Article  Google Scholar 

  • Bunge HJ, Haessner F (1968) Three-dimensional orientation distribution function of crystals in cold-rolled copper. J Appl Phys 39(12):5503–5514

    Article  Google Scholar 

  • Bunge HJ (2013) Texture analysis in materials science: mathematical methods. Elsevier

    Google Scholar 

  • Chen D, Kuo J-C, Wu W-T (2011) Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 111(9):1488–1494

    Article  Google Scholar 

  • Čı́hal Vr, Štefec R (2001) On the development of the electrochemical potentiokinetic method. Electrochimica Acta 46(24):3867–3877

    Google Scholar 

  • Coates DG (1967) Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philos Mag: J Theor Exp Appl Phys 16(144):1179–1184

    Article  Google Scholar 

  • Dingley DJ, Wright SI, Nowell MM (2005) Dynamic background correction of electron backscatter diffraction patterns. Microsc Microanal 11(S02):528–529

    Article  Google Scholar 

  • El-Dasher BS, Adams BL, Rollett AD (2003) Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Mater 48(2):141–145

    Article  Google Scholar 

  • Gertsman V (2001) Coincidence site lattice theory of multicrystalline ensembles. Acta Crystallogr A 57(6):649–655

    Article  Google Scholar 

  • Gertsman VY, Janecek M, Tangri K (1996) Grain boundary ensembles in polycrystals. Acta Mater 44(7):2869–2882

    Article  Google Scholar 

  • Gertsman VY, Tangri K (1995) Computer simulation study of grain boundary and triple junction distributions in microstructures formed by multiple twinning. Acta Metall Mater 43(6):2317–2324

    Article  Google Scholar 

  • Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23(3):TC3006

    Google Scholar 

  • Gidla MR (2017) Effect of machining on mechanical, tribological and functional properties of mild steel, M.Tech. thesis at IIT Kanpur

    Google Scholar 

  • Halfpenny A, Prior DJ, Wheeler J (2012) Electron backscatter diffraction analysis to determine the mechanisms that operated during dynamic recrystallisation of quartz-rich rocks. J Struct Geol 36:2–15

    Article  Google Scholar 

  • Heinz A, Neumann P (1991) Representation of orientation and disorientation data for cubic, hexagonal, tetragonal and orthorhombic crystals. Acta Crystallogr A 47(6):780–789

    Article  MathSciNet  MATH  Google Scholar 

  • Herter T, Lott K (1993) Algorithms for decomposing 3-D orthogonal matrices into primitive rotations. Comput Graph 17(5):517–527

    Article  Google Scholar 

  • Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14(2):145–159

    Article  Google Scholar 

  • Humphreys FJ (1999) Quantitative metallography by electron backscattered diffraction. J Microsc 195(3):170–185

    Article  Google Scholar 

  • Humphreys FJ (2001) Review grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci 36(16):3833–3854

    Article  Google Scholar 

  • Humphreys FJ, Brough I (1999) High resolution electron backscatter diffraction with a field emission gun scanning electron microscope. J Microsc 195(Pt 1):6–9

    Google Scholar 

  • Humphreys FJ, Huang Y, Brough I, Harris C (1999) Electron backscatter diffraction of grain and subgrain structures—resolution considerations. J Microsc 195(3):212–216

    Article  Google Scholar 

  • Hunter NJR, Weinberg RF, Wilson CJL, Luzin V, Misra S (2018) Microscopic anatomy of a “hot-on-cold” shear zone: insights from quartzites of the Main Central Thrust in the Alaknanda region (Garhwal Himalaya). GSA Bull 130(9–10):1519–1539

    Article  Google Scholar 

  • Janardhan AS (1999) Southern granulite terrain, south of the palghat-cauvery shear zone: implications for India-madagascar connection. Gondwana Res 2(3):463–469

    Article  Google Scholar 

  • Joham R, Sharma NK, Mondal K, Shekhar S (2017) Low temperature cross-rolling to modify grain boundary character distribution and its effect on sensitization of SS304. J Mater Process Technol 240:324–331

    Article  Google Scholar 

  • Joy DC, Newbury DE, Davidson DL (1982) Electron channeling patterns in the scanning electron microscope. J Appl Phys 53(8):R81–R122

    Article  Google Scholar 

  • Kamaladasa R, Picard Y (2010) Basic principles and application of electron channeling in a scanning electron microscope for dislocation analysis. Microsc: Sci Technol Appl Educ 3:1583–1590

    Google Scholar 

  • Kunze K, Wright SI, Adams BL, Dingley DJ (1993) Advances in automatic EBSP single orientation measurements. Textures Microstruct 20:589659

    Article  Google Scholar 

  • Larson KP (2018) Refining the structural framework of the Khimti Khola region, east-central Nepal Himalaya, using quartz textures and c-axis fabrics. J Struct Geol 107:142–152

    Article  Google Scholar 

  • Lloyd GE, Freeman B (1994) Dynamic recrystallization of quartz under greenschist conditions. J Struct Geol 16(6):867–881

    Article  Google Scholar 

  • Mainprice D, Hielscher R, Schaeben H (2011) Calculating anisotropic physical properties from texture data using the MTEX open-source package. Geolog Soc, London, Spec Publ 360(1):175–192

    Article  Google Scholar 

  • Majumdar P, Shekhar S, Mondal K (2015) Effect of machining parameters on oxidation behavior of mild steel. J Mater Eng Perform 24(1):484–498

    Article  Google Scholar 

  • Michael J, Giannuzzi L (2007) Improved EBSD sample preparation via low energy Ga + FIB Ion milling. Microsc Microanal 13(S02):926–927

    Article  Google Scholar 

  • Morawiec A, Field DP (1996) Rodrigues parameterization for orientation and misorientation distributions. Philos Mag A 73(4):1113–1130

    Article  Google Scholar 

  • Nicolas A, Poirier J-P (1976) Crystalline plasticity and solid state flow in metamorphic rocks. Jokn Wiley & Sons, London, p 444

    Google Scholar 

  • Nishikawa S, Kikuchi S (1928a) Diffraction of cathode rays by calcite. Nature 122(3080):726–726

    Article  Google Scholar 

  • Nishikawa S, Kikuchi S (1928b) Diffraction of cathode rays by mica. Nature 121(3061):1019–1020

    Article  Google Scholar 

  • Nolze G, Hielscher R (2016) IPF coloring of crystal orientation data. Preprint Technische Universität Chemnitz

    Google Scholar 

  • Nowell MM, Witt RA, True B (2005) EBSD sample preparation: techniques, tips, and tricks. Microsc Microanal 11(S02):504–505

    Article  Google Scholar 

  • Passchier CW, Trouw RA (2005) Microtectonics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Prakash M, Moon AP, Mondal K, Shekhar S (2015a) Effect of machining configurations on the electrochemical response of mild steel in 3.5% NaCl solution. J Mater Eng Perform 24(9):3643–3650

    Article  Google Scholar 

  • Prakash M, Shekhar S, Moon A, Mondal K (2015b) Effect of machining configuration on the corrosion of mild steel. J Mater Process Technol 219:70–83

    Article  Google Scholar 

  • Prior DJ (1999) Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195(3):217–225

    Article  Google Scholar 

  • Raith M, Karmakar S, Brown M (1997) Ultra-high-temperature metamorphism and multistage decompressional evolution of sapphirine granulites from the Palni Hill Ranges, southern India. J Metamorph Geol 15(3):379–399

    Article  Google Scholar 

  • Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52(14):4067–4081

    Article  Google Scholar 

  • Randle V, Davies H, Cross I (2001) Grain boundary misorientation distributions. Curr Opin Solid State Mater Sci 5(1):3–8

    Article  Google Scholar 

  • Reed BW, Kumar M (2006) Mathematical methods for analyzing highly-twinned grain boundary networks. Scripta Mater 54(6):1029–1033

    Article  Google Scholar 

  • Reed BW, Minich RW, Rudd RE, Kumar M (2004) The structure of the cubic coincident site lattice rotation group. Acta Crystallogr A 60(3):263–277

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu S, Sharma NK, Patel SK, Mondal K, Shekhar S (2019) The effect of grain boundary structure on sensitization behavior in a nickel-based superalloy. J Mater Sci 54:1797–1818

    Article  Google Scholar 

  • Sahu S, Yadav PC, Shekhar S (2018) Use of hot rolling for generating low deviation twins and a disconnected random boundary network in inconel 600 alloy. Metall Mater Trans A 49(2):628–643

    Article  Google Scholar 

  • Schwartz AJ, Kumar M, Adams BL, Field DP (eds) (2009) Electron backscatter diffraction in materials science, 2nd edn. Springer, US, Boston, MA, pp 21–143

    Google Scholar 

  • Sharma NK, Shekhar S (2017) Microstructure and property evolution for hot-rolled and cold-rolled austenitic stainless steel 316L. Trans Indian Inst Met 70(5):1277–1284

    Article  Google Scholar 

  • Sharma NK, Shekhar S (2018) Deconvoluting error in measurement of low angle misorientation distribution. Micron 107:28–34

    Article  Google Scholar 

  • Shekhar S, Abolghasem S, Basu S, Cai J, Shankar M (2012) Effect of severe plastic deformation in machining elucidated via rate-strain-microstructure map**s. J Manuf Sci Eng 134(3):031008

    Article  Google Scholar 

  • Shoemake K (1994) III.5.—Euler angle conversion. In: Heckbert PS (ed) Graphics gems, vol 4. Elsevier Inc, London, pp 222–229

    Google Scholar 

  • Singh S, Guo Y, Winiarski B, Burnett TL, Withers PJ, De Graef M (2018) High resolution low kV EBSD of heavily deformed and nanocrystalline Aluminium by dictionary-based indexing. Sci Rep 8(1):10991

    Article  Google Scholar 

  • Stipp M, Tullis J (2003) The recrystallized grain size piezometer for quartz. Geophys Res Lett 30(21):2088

    Article  Google Scholar 

  • Twiss RJ (1986) Variable sensitivity piezometric equations for dislocation density and subgrain diameter and their relevance to olivine and quartz. Min Rock Deformation: Lab Stud, AGU Geophys Monogr 36:247–263

    Article  Google Scholar 

  • Vaid A, Mittal K, Sahu S, Shekhar S (2016) Controlled evolution of coincidence site lattice related grain boundaries. Trans Indian Inst Met 69(9):1745–1753

    Article  Google Scholar 

  • Verma M (2014) Effect of machining configurations on the mechanical properties of SS316L, M.Tech. thesis at IIT Kanpur

    Google Scholar 

  • Wang YZ, Kong MG, Liu ZW, Lin CC, Zeng Y (2016) Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction. J Microsc 264(1):34–40

    Article  Google Scholar 

  • Wang Z, Saldana C, Basu S (2017) Subsurface microstructure and crystallographic texture in surface severe plastic deformation processes. In: International manufacturing science and engineering conference. American Society of Mechanical Engineers

    Google Scholar 

  • Watanabe T (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mechanica 11(1):47–84

    Google Scholar 

  • Wilkinson AJ (2001) A new method for determining small misorientations from electron back scatter diffraction patterns. Scripta Mater 44(10):2379–2385

    Article  Google Scholar 

  • Wilkinson AJ, Britton TB (2012) Strains, planes, and EBSD in materials science. Mater Today 15(9):366–376

    Article  Google Scholar 

  • Wilkinson AJ, Britton TB, Jiang J, Karamched PS (2014) A review of advances and challenges in EBSD strain map**. IOP Conf Ser: Mater Sci Eng 55:012020

    Article  Google Scholar 

  • Wilkinson AJ, Hirsch PB (1997) Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28(4):279–308

    Article  Google Scholar 

  • Wilson AW, Spanos G (2001) Application of orientation imaging microscopy to study phase transformations in steels. Mater Charact 46(5):407–418

    Article  Google Scholar 

  • Wright SI, Field DP, Nowell MM (2015) Post processing effects on GND calculations from EBSD-based orientation measurements. IOP Conf Ser: Mater Sci Eng 89:012049

    Article  Google Scholar 

  • Wright S, Nowell M, Basinger J (2017) Precision of EBSD based orientation measurements. Microsc Microanal 17(S2):406–407

    Article  Google Scholar 

  • Yadav PC, Sahu S, Subramaniam A, Shekhar S (2018) Effect of heat-treatment on microstructural evolution and mechanical behaviour of severely deformed Inconel 718. Mater Sci Eng, A 715:295–306

    Article  Google Scholar 

  • Yadav PC, Sharma NK, Sahu S, Shekhar S (2019) Influence of short heat-treatment on microstructural and mechanical inhomogeneity of constrained groove pressed Cu-Zn alloy. Mater Chem Phys 238:121912

    Article  Google Scholar 

  • Yadav PC, Sinhal A, Sahu S, Roy A, Shekhar S (2016) Microstructural inhomogeneity in constrained groove pressed Cu-Zn alloy sheet. J Mater Eng Perform 25(7):2604–2614

    Article  Google Scholar 

  • Yuri T, Ono Y, Ogata T (2003) Effects of surface roughness and notch on fatigue properties for Ti–5Al–2.5Sn ELI alloy at cryogenic temperatures. Sci Technol Adv Mater 4(4):291–299

    Google Scholar 

  • Zaefferer S, Elhami N-N (2014) Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater 75:20–50

    Article  Google Scholar 

Download references

Acknowledgements

All the EBSD data was generated using the facilities in the Advanced Centre for Material Sciences (ACMS) of IIT Kanpur. Mr. Sivakumar assisted in EBSD data acquisition for the Inconel 718 sample. EBSD of duplex steel was acquired by Prince Setia. Saquib Abdullah, Dripta Dutta, and R. Sarvesha assisted in the EBSD data acquisition and analysis of quartz in case study (B). A part of the work in case study (B) is supported by a DST Swarnajayanti Fellowship (DST/SJF/E&ASA-01/2015-16), awarded to Santanu Misra. Case study (C) is part of the project funded by BRNS, under sanction No. 36(2)/14/39/2016-BRNS/6047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Shekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shekhar, S., Sharma, N.K., Sahu, S., Misra, S. (2022). Electron Backscatter Diffraction Technique: Fundamentals to Applications. In: Biswas, K., Sivakumar, S., Gurao, N. (eds) Electron Microscopy in Science and Engineering. IITK Directions, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-16-5101-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5101-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5100-7

  • Online ISBN: 978-981-16-5101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation