Abstract

Affinity chromatography involves targeted purification of biological macromolecules from a crude mixture on the basis of highly specific interaction between the macromolecule and a tag protein or peptide. The interaction is typically reversible and purification is implemented by kee** one of the molecules (the affinity ligand or fusion tag) immobilized to the support matrix (containing respective binding resin for interaction with the tag) while its partner (the target protein) is in a mobile phase as part of the crude mixture. In this chapter we will be discussing recombinant protein purification using different affinity tags that are routinely used in a laboratory setup that include polyhistidine, GST (glutathione-S-transferase), maltose-binding protein (MBP) and Strep-tag. As affinity chromatography is a sophisticated purification method that requires significant expertise, the protocol and the problem-solving approaches described in this chapter will act as essential guides to the protein biochemists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sumner JB. The isolation and crystallization of the enzyme urease: preliminary paper. J Biol Chem. 1926;69(2):435–41.

    Article  CAS  Google Scholar 

  2. Campbell DH, Luescher E, Lerman LS. Immunologic adsorbents: I. isolation of antibody by means of a cellulose-protein antigen. Proc Natl Acad Sci U S A. 1951;37(9):575–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gräslund S, et al. Protein production and purification. Nat Methods. 2008;5(2):135–46.

    Article  PubMed  Google Scholar 

  4. Gómez-Arribas LN, et al. Tag-specific affinity purification of recombinant proteins by using molecularly imprinted polymers. Anal Chem. 2019;91(6):4100–6.

    Article  PubMed  Google Scholar 

  5. Mahmoodi S, et al. Current affinity approaches for purification of recombinant proteins. Cogent Biol. 2019;5(1):1665406.

    Article  CAS  Google Scholar 

  6. Spriestersbach A, et al. Chapter One - Purification of his-tagged proteins. In: Lorsch JR, editor. Methods in enzymology. Cambridge, MA: Academic Press; 2015. p. 1–15.

    Google Scholar 

  7. Kimple ME, Brill AL, Pasker RL. Overview of affinity tags for protein purification. Curr Protoc Protein Sci. 2013;73:9.9.1–9.9.23.

    Article  Google Scholar 

  8. Trigoso YD, et al. Cloning, expression, and purification of histidine-tagged Escherichia coli dihydrodipicolinate reductase. PLoS One. 2016;11(1):e0146525.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schoonen L, et al. Alternative application of an affinity purification tag: hexahistidines in ester hydrolysis. Sci Rep. 2017;7(1):14772.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aatsinki JT, Rajaniemi HJ. An alternative use of basic pGEX vectors for producing both N- and C-terminal fusion proteins for production and affinity purification of antibodies. Protein Expr Purif. 2005;40(2):287–91.

    Article  CAS  PubMed  Google Scholar 

  11. Harper S, Speicher DW. Purification of proteins fused to glutathione S-transferase. Methods Molecul Biol (Clifton, NJ). 2011;681:259–80.

    CAS  Google Scholar 

  12. Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J. 2012;7(5):620–34.

    Article  CAS  PubMed  Google Scholar 

  13. Schäfer F, et al. Purification of GST-tagged proteins. Methods Enzymol. 2015;559:127–39.

    Article  PubMed  Google Scholar 

  14. Fox JD, Waugh DS. Maltose-binding protein as a solubility enhancer. In: Vaillancourt PE, editor. E. coli gene expression protocols. Totowa, NJ: Humana Press; 2003. p. 99–117.

    Google Scholar 

  15. Maina CV, et al. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene. 1988;74(2):365–73.

    Article  CAS  PubMed  Google Scholar 

  16. Duong-Ly KC, Gabelli SB. Affinity purification of a recombinant protein expressed as a fusion with the maltose-binding protein (MBP) tag. Methods Enzymol. 2015;559:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klein W. Calmodulin-binding peptide as a removable affinity tag for protein purification. In: Vaillancourt PE, editor. E. coli gene expression protocols. Totowa, NJ: Humana Press; 2003. p. 79–97.

    Google Scholar 

  18. Zhao X, Li G, Liang S. Several affinity tags commonly used in chromatographic purification. J Anal Methods Chem. 2013;2013:581093.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fraseur JG, Kinzer-Ursem TL. Next generation calmodulin affinity purification: clickable calmodulin facilitates improved protein purification. PLoS One. 2018;13(6):e0197120.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmidt TGM, et al. Development of the twin-strep-tag® and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr Purif. 2013;92(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  21. Rai J, et al. Strep-tag II and twin-strep based cassettes for protein tagging by homologous recombination and characterization of endogenous macromolecular assemblies in Saccharomyces cerevisiae. Mol Biotechnol. 2014;56(11):992–1003.

    Article  CAS  PubMed  Google Scholar 

  22. Ivanov KI, et al. One-step purification of twin-strep-tagged proteins and their complexes on strep-tactin resin cross-linked with bis(sulfosuccinimidyl) suberate (BS3). JoVE. 2014;86:51536.

    Google Scholar 

  23. De Giuseppe A, et al. Purification by strep-Tactin affinity chromatography of a delete envelope gp51 protein of bovine Leukaemia virus expressed in Sf21 insect cells. Protein J. 2010;29(3):153–60.

    Article  PubMed  Google Scholar 

  24. Cheung RCF, Wong JH, Ng TB. Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol. 2012;96(6):1411–20.

    Article  CAS  PubMed  Google Scholar 

  25. Mohanty AK, Wiener MC. Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif. 2004;33(2):311–25.

    Article  CAS  PubMed  Google Scholar 

  26. Hemdan ES, et al. Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc Natl Acad Sci U S A. 1989;86(6):1811–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Booth WT, et al. Impact of an N-terminal Polyhistidine tag on protein thermal stability. ACS Omega. 2018;3(1):760–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaganti LK, Kuppili RR, Bose K. Intricate structural coordination and domain plasticity regulate activity of serine protease HtrA2. FASEB J. 2013;27(8):3054–66.

    Article  CAS  PubMed  Google Scholar 

  29. Singh MI, Jain V. Tagging the expressed protein with 6 histidines: rapid cloning of an amplicon with three options. PLoS One. 2013;8(5):–e63922.

    Google Scholar 

  30. Goh HC, et al. Going native: complete removal of protein purification affinity tags by simple modification of existing tags and proteases. Protein Expr Purif. 2017;129:18–24.

    Article  CAS  PubMed  Google Scholar 

  31. Hochuli E, Döbeli H, Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr A. 1987;411:177–84.

    Article  CAS  Google Scholar 

  32. Chaga G, Hopp J, Nelson P. Immobilized metal ion affinity chromatography on Co2+−carboxymethylaspartate–agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol Appl Biochem. 1999;29(1):19–24.

    CAS  PubMed  Google Scholar 

  33. Bornhorst JA, Falke JJ. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 2000;326:245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crowe J, et al. 6xffis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. In: Harwood AJ, editor. Protocols for gene analysis. Totowa, NJ: Humana Press; 1994. p. 371–87.

    Chapter  Google Scholar 

  35. Schmitt J, Hess H, Stunnenberg HG. Affinity purification of histidine-tagged proteins. Mol Biol Rep. 1993;18(3):223–30.

    Article  CAS  PubMed  Google Scholar 

  36. Schlager B, Straessle A, Hafen E. Use of anionic denaturing detergents to purify insoluble proteins after overexpression. BMC Biotechnol. 2012;12(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haneskog L. Purification of histidine-tagged proteins under denaturing conditions using IMAC. Cold Spring Harb Protoc. 2006;1:pdb.prot4221.

    Article  Google Scholar 

  38. Sinha D, Bakhshi M, Vora R. Ligand binding assays with recombinant proteins refolded on an affinity matrix. BioTechniques. 1994;17(3):509–12. 514

    CAS  PubMed  Google Scholar 

  39. Richard V, Viallon J, Cao-Lormeau V-M. Use of centrifugal filter devices to concentrate dengue virus in mosquito per os infection experiments. PLoS One. 2015;10(9):e0138161.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Antaloae AV, et al. Optimisation of recombinant production of active human cardiac SERCA2a ATPase. PLoS One. 2013;8(8):e71842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maity R, et al. GST-His purification: a two-step affinity purification protocol yielding full-length purified proteins. JoVE. 2013;80:e50320.

    Google Scholar 

  42. Dobrowolski P. Short protocols in molecular biology. In: Ausubel FM, et al., editors. A compendium of methods from “current protocols in molecular biology”, Acta biotechnologica, vol. 13(1). 2nd ed. Hoboken, NJ: John Wiley & Sons; 1993. p. 88. ISBN: 0-471-57735-9.

    Google Scholar 

  43. Kumar Purbey P, et al. GST fusion vector with caspase-6 cleavage site for removal of fusion tag during column purification. BioTechniques. 2005;38(3):360–6.

    Article  Google Scholar 

  44. Harper S, Speicher DW. Expression and purification of GST fusion proteins. Curr Protoc Protein Sci. 1997;9(1):6.6.1–6.6.21.

    Article  Google Scholar 

  45. Harper S, Speicher DW. Expression and purification of GST fusion proteins. Curr Protoc Protein Sci. 2008;52(1):6.6.1–6.6.26.

    Article  Google Scholar 

  46. James GT. Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem. 1978;86(2):574–9.

    Article  CAS  PubMed  Google Scholar 

  47. Nikaido H. Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett. 1994;346(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  48. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399–408.

    Article  CAS  PubMed  Google Scholar 

  49. Randall LL, et al. SeeB: A chaperone from Escherichia coli. In: Methods in enzymology. Cambridge, MA: Academic Press; 1998. p. 444–59.

    Google Scholar 

  50. Sachdev D, Chirgwin JM. Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem Biophys Res Commun. 1998;244(3):933–7.

    Article  CAS  PubMed  Google Scholar 

  51. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Riggs P. Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol Biotechnol. 2000;15(1):51–63.

    Article  CAS  PubMed  Google Scholar 

  53. Kapust RB, Waugh DS. Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif. 2000;19(2):312–8.

    Article  CAS  PubMed  Google Scholar 

  54. Nallamsetty S, Waugh DS. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc. 2007;2(2):383–91.

    Article  CAS  PubMed  Google Scholar 

  55. Sheffield P, Garrard S, Derewenda Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr Purif. 1999;15(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  56. Mohanty AK, Simmons CR, Wiener MC. Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif. 2003;27(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  57. Lebendiker M, Danieli T. Purification of proteins fused to maltose-binding protein. In: Walls D, Loughran ST, editors. Protein chromatography: methods and protocols. New York, NY: Springer New York; 2017. p. 257–73.

    Chapter  Google Scholar 

  58. Yeliseev A, Zoubak L, Schmidt TGM. Application of strep-Tactin XT for affinity purification of twin-strep-tagged CB(2), a G protein-coupled cannabinoid receptor. Protein Expr Purif. 2017;131:109–18.

    Article  CAS  PubMed  Google Scholar 

  59. Johar SS, Talbert JN. Strep-tag II fusion technology for the modification and immobilization of lipase B from Candida antarctica (CALB). J Genet Eng Biotechnol. 2017;15(2):359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meyer-Ficca ML, et al. Comparative analysis of inducible expression systems in transient transfection studies. Anal Biochem. 2004;334(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt TGM, Skerra A. The strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc. 2007;2(6):1528–35.

    Article  CAS  PubMed  Google Scholar 

  62. Maertens B, et al. Chapter Five - Strep-tagged protein purification. In: Lorsch JR, editor. Methods in enzymology. Academic Press; 2015. p. 53–69.

    Google Scholar 

  63. Kresoja-Rakic J, Felley-Bosco E. Desthiobiotin-streptavidin-affinity mediated purification of RNA-interacting proteins in mesothelioma cells. JoVE. 2018;134:57516.

    Google Scholar 

  64. Meerman HJ, Georgiou G. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology. 1994;12(11):1107–10.

    Article  CAS  Google Scholar 

  65. Singh N, et al. Dual regulatory switch confers tighter control on HtrA2 proteolytic activity. FEBS J. 2014;281(10):2456–70.

    Article  CAS  PubMed  Google Scholar 

  66. Kummari R, et al. Discerning the mechanism of action of HtrA4: a serine protease implicated in the cell death pathway. Biochem J. 2019;476(10):1445–63.

    Article  CAS  PubMed  Google Scholar 

  67. Bell MR, et al. To fuse or not to fuse: what is your purpose? Protein Sci. 2013;22(11):1466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kummari R, et al. Elucidating the role of GRIM-19 as a substrate and allosteric activator of pro-apoptotic serine protease HtrA2. Biochem J. 2021;478(6):1241–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Advanced Centre for Treatment, Research and Education in Cancer (ACTREC) for providing necessary infrastructure and resources for successful completion of the chapter. The authors acknowledge Ms. Chanda Baisane, Bose Lab, ACTREC for formatting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Problems

Problems

Multiple choice questions

  1. 1.

    The specific biological interaction that is not used in affinity chromatography purification is:

    1. (a)

      Receptor-ligand

    2. (b)

      Antigen-antibody

    3. (c)

      Cations-anions

    4. (d)

      Enzyme-substrate

  2. 2.

    The first step of affinity chromatography purification process is:

    1. (a)

      Addition of affinity ligand into the matrix

    2. (b)

      Precipitation

    3. (c)

      Elution

    4. (d)

      Binding of the ligand with the tag

  3. 3.

    The property of an ideal affinity chromatography matrix is:

    1. (a)

      The matrix materials should be polymeric and organic

    2. (b)

      The matrix should be based on inorganic compounds

    3. (c)

      The matrix should be mechanically stable and exhibit good flow property

    4. (d)

      The matrix should form reversible but specific interaction with the affinity tag

Subjective questions

  1. 1.

    A 50 kDa His-tagged protein was adequately expressed in E. coli BL21 (DE3) host strain and subsequently purified using Ni-NTA column. Buffer conditions were as follows:

    Binding buffer: 50 mM NaH2PO4, 150 mM NaCl and 10 mM Imidazole, pH 7.4

    Elution buffer: 50 mM NaH2PO4, 150 mM NaCl and 100 mM imidazole, pH 7.4

    On purification, the protein co-elutes with chaperones and non-specific bands. In addition, white precipitates were observed in the eluted fractions. List a few strategies that can be employed to obtain better yield and purity of target protein.

  2. 2.

    To assess the interactions between protein A and protein B, an MBP pull-down assay was performed. Protein A (22 kDa) was tagged with MBP and considered the bait protein, whereas protein B (48 kDa) was kept untagged. The proteins were incubated in following buffer conditions:

    Binding buffer: 20 mM Tris–HCl, 200 mM NaCl, 1 mM EDTA, pH 7.4

    Elution buffer: 10 mM Maltose, 20 mM Tris–HCl, 200 mM NaCl, 1 mM EDTA, pH 7.4

    Post-elution, the pull-down eluates were subjected to SDS-PAGE analysis kee** only MBP as the control. The resultant gel analysis showed an unexpected band at 70 kDa which neither corresponds to protein A nor B. State a reason that can explain the band and also provide a strategy that can be implemented to avoid such bands.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S., Bose, K. (2022). Protein Purification by Affinity Chromatography. In: Bose, K. (eds) Textbook on Cloning, Expression and Purification of Recombinant Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-16-4987-5_6

Download citation

Publish with us

Policies and ethics

Navigation