Nanotechnology for Rice Fungal Diseases

  • Chapter
  • First Online:
Modern Techniques of Rice Crop Production

Abstract

Rice is being used as an important source of food by a large number of people. Its production needs to be maintained to feed the increasing number of people on this planet. Various diseases are affecting this important source of food and decreasing both quality and quantity. Fungal diseases contribute a lot in this regard. Many methods have been adopted over the years to combat the diseases of rice. Use of resistant varieties and fertilizers have helped to increase yield. Similarly, chemical fungicides have been used at an immense scale to control the fungal diseases. All these techniques helped to manage the diseases, but on the other hand also raised many concerns. Surplus use of chemicals has always been a hazard for the environment. Excessive use of certain chemicals and fertilizers indeed increased the susceptibility of rice to certain fungal diseases. Use of chemical-based fungicides over the years has developed resistance in fungi toward these fungicides. We have now come across many new methodologies to managing the fungal diseases of rice like use of Nanotechnology. In this chapter, needs and benefits of nanotechnology in the management of rice fungal diseases have been discussed. This chapter focuses on major fungal diseases of rice and their management using various nanotechnological methods like use of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad S, Hasanuzzaman M (2012) Integrated effect of plant density, N rates and irrigation regimes on the biomass production, N content, PAR use efficiencies and water productivity of rice under irrigated semiarid environment. Not Bot Horti Agrobot Cluj Napoca 40(1):201–211

    Article  CAS  Google Scholar 

  • Ahmad S, Zia-ul-Haq M, Ali H, Shad SA, Ammad A, Maqsood M, Khan MB, Mehmood S, Hussain A (2008) Water and radiation use efficiencies of transplanted rice (Oryza sativa L.) at different plant densities and irrigation regimes under semi-arid environment. Pak J Bot 40(1):199–209

    Google Scholar 

  • Ahmad S, Ahmad A, Zia-ul-Haq M, Ali H, Khaliq T, Anjum MA, Khan MA, Hussain A, Hoogenboom G (2009) Resources use efficiency of field grown transplanted rice (Oryza sativa L.) under irrigated semiarid environment. J Food Agric Environ 7(2):487–492

    Google Scholar 

  • Ahmad S, Ahmad A, Soler CMT, Ali H, Zia-Ul-Haq M, Anothai J, Hussain A, Hoogenboom G, Hasanuzzaman M (2012) Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precis Agric 13(2):200–218

    Article  Google Scholar 

  • Ahmad S, Ahmad A, Ali H, Hussain A, Garcia y Garcia A, Khan MA, Zia-Ul-Haq M, Hasanuzzaman M, Hoogenboom G (2013) Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrig Sci 31(3):491–506

    Google Scholar 

  • Ahmad A, Ashfaq M, Rasul G, Wajid SA, Khaliq T, Rasul F, Saeed U, Rahman MH, Hussain J, Baig IA, Naqvi AA, SAA B, Ahmad S, Naseem W, Hoogenboom G, Valdivia RO (2015) Impact of climate change on the rice–wheat crop** system of Pakistan. In: Hillel D, Rosenzweig C (eds) Handbook of climate change and agro-ecosystems: The Agricultural Modeling Intercomparison and Improvement Project (AgMIP) integrated crop and economic assessments. Imperial College Press/American Society of Agronomy, London/Hackensack, pp 219–258

    Chapter  Google Scholar 

  • Ahmad S, Abbas G, Ahmed M, Fatima Z, Anjum MA, Rasul G, Khan MA, Hoogenboom G (2019) Climate warming and management impact on the change of rice-wheat phenology in Punjab, Pakistan. Field Crop Res 230:46–61

    Article  Google Scholar 

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 31–46

    Chapter  Google Scholar 

  • Ahmed M, Ahmad S (2020) Systems modeling. In: Ahmed M (ed) Systems modeling. Springer Nature, Cham, pp 1–44

    Chapter  Google Scholar 

  • Ahmed MF, Khalequzzaman KM, Islam MN, Anam MK, Islam MT (2002) Effect of fungicides against Bipolaris oryzae of rice under in vitro condition. Plant Pathol J 1:4–7

    Article  Google Scholar 

  • Ahmed M, Fayyaz-ul-Hassan, Ahmad S (2017) Climate variability impact on rice production: adaptation and mitigation strategies. In: Ahmed M, Stockle C (eds) Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Cham, pp 91–111

    Chapter  Google Scholar 

  • Ahmed M, Ahmad S, Raza MA, Kumar U, Ansar M, Shah GA, Parsons D, Hoogenboom G, Palosuo T, Seidel S (2020a) Models calibration and evaluation. In: Ahmed M (ed) Systems modeling. Springer Nature Singapore, Singapore, pp 151–178

    Chapter  Google Scholar 

  • Ahmed M, Ahmad S, Waldrip HM, Ramin M, Raza MA (2020b) Whole farm modeling: A systems approach to understanding and managing livestock for greenhouse gas mitigation, economic viability and environmental quality. In: Waldrip HM, Pagliari PH, He Z (eds) Animal Manure, ASA Special Publication 67. American Society of Agronomy/Soil Science Society of America, Madison, WI, pp 345–371

    Chapter  Google Scholar 

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S, Hasnain A, Maqbool MM, Rehmani MIA, Rasool A, Masood N, Mahmood F, Mubeen M, Sultana SR, Fahad S, Amanet K, Saleem M, Abbas Y, Akhtar HM, Hussain S, Waseem F, Murtaza R, Amin A, Zahoor SA, Sami ul Din M, Nasim W (2018) Fate of organic and inorganic pollutants in paddy soils. In: Hashmi MZ, Varma A (eds.), Environmental pollution of paddy soils. Springer Nature Switzerland, Cham, pp 197–214

    Google Scholar 

  • Akram R, Fahad S, Masood N, Rasool A, Ijaz M, Ihsan MZ, Maqbool MM, Ahmad S, Hussain S, Ahmed M, Kaleem S, Sultana SR, Mubeen M, Saud S, Kamran M, Nasim W (2019) Plant growth and morphological changes in rice under abiotic stress. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead, Cambridge

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–2

    Article  PubMed  PubMed Central  Google Scholar 

  • Aritonang HF, Koleangan H, Wuntu AD (2019) Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol 2019:8642303. https://doi.org/10.1155/2019/8642303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asibi AE, Chai Q, Coulter JA (2019) Rice blast: a disease with implications for global food security. Agron 9:451–463

    Article  CAS  Google Scholar 

  • Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner AP, Patra HK (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun 55:6964–6996

    Article  CAS  Google Scholar 

  • Bagga PS, Sharma VK (2012) Evaluation of fungicides as seedling treatment for controlling bakanae/foot-rot (Fusarium moniliforme) disease in basmati rice. Indian Phytopathol 59:305–308

    Google Scholar 

  • Bakar RA, Yahya R, Gan SN (2016) Production of high purity amorphous silica from rice husk. Proc Chem 19:189–195

    Article  CAS  Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad N (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  PubMed  Google Scholar 

  • Barmota H, Sidhu A, Rani R (2018) Microwave oriented sonochemical method for synthesis of copper sulfide nanoparticles as antifungal agents. Int J Chem Stud 6:2090–2093

    Google Scholar 

  • Barnwal MK, Kotasthane A, Magculia N, Mukherjee PK, Savary S, Sharma AK, Singh HB, Singh US, Sparks AH, Variar M, Zaidi N (2013) A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. Eur J Plant Pathol 136:443–457

    Article  Google Scholar 

  • Bashar MA, Hossain MA, Rahman MM, Uddin MN, Begum MN (2010) Biological control of sheath blight disease of rice by using antagonistic bacteria. Bangladesh J Sci Ind Res 45:225–232

    Article  Google Scholar 

  • Bhargava P, Kumar A, Kumar S, Azad CS (2018) Impact of fungicides and nanoparticles on Ustilaginoidea virens causing false smut disease of rice. J Pharmacogn Phytochem 7:1541–1544

    CAS  Google Scholar 

  • Campos EV, De Oliveira JL, Da Silva CM, Pascoli M, Pasquoto T, Lima R, Abhilash PC, Fraceto LF (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep 5:1–4. https://doi.org/10.1038/srep13809

    Article  Google Scholar 

  • Chen H (2018) Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem Speciat Bioavailab 30:123–134

    Article  CAS  Google Scholar 

  • Chiranjeevi N, Kumar PA, Jayalakshmi RS, Prasad KH, Prasad TN (2018) Bio efficacy of biogenic silver nanoparticles against rice sheath blight causing pathogen Rhizoctonia solani Kuhn. Int J Curr Microbiol App Sci 7:4148–4160

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Lee JJ, Jeon J (2018) Genomic insights into the rice blast fungus through estimation of gene emergence time in phylogenetic context. Mycobiology 46:361–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou C, Castilla N, Hadi B, Tanaka T, Chiba S, Sato I (2020) Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Prot 135:104864

    Article  Google Scholar 

  • Dar J, Soytong K (2014) Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. J Agric Technol 10:823–831

    Google Scholar 

  • Deising HB, Reimann S, Pascholati SF (2008) Mechanisms and significance of fungicide resistance. Braz J Microbiol 39:286–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi S, Sharma GD (2010) Blast disease of rice caused by Magnaporthe grisea: a review. Assam Univ J Sci Technol 6:144–154

    Google Scholar 

  • Downing MA, Jain PK (2020) Mesoporous silica nanoparticles: synthesis, properties, and biomedical applications. In: Chung EJ, Leon L, Rinaldi C (eds) Nanoparticles for biomedical applications. Elsevier, Amsterdam, pp 267–281

    Chapter  Google Scholar 

  • Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  Google Scholar 

  • Elamawi RMA, El-Shafey RAS (2013) Inhibition effect of silver nanoparticles against rice blast disease caused by Magnaporthe grisea. Egypt J Agric Res 91(4)

    Google Scholar 

  • Elamawi RM, Bassiouni SM, Elkhoby WM, Zayed BA (2016) Effect of zinc oxide nanoparticles on brown spot disease and rice productivity under saline soil. J Plant Prot Pathol 7:171–181

    Google Scholar 

  • Elamawi RM, Tahoon AM, Elsharnoby DE, El-Shafey RA (2020) Bio-production of silica nanoparticles from rice husk and their impact on rice bakanae disease and grain yield. Arch Phytopathol Plant Protect 53:459–478

    Article  CAS  Google Scholar 

  • El-Naggar ME, Abdelsalam NR, Fouda MM, Mackled MI, Al-Jaddadi MA, Ali HM, Manzer HS, Essam EK, Kandil EE (2020) Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials (Basel) 10:739–758

    Article  CAS  Google Scholar 

  • Fahad S, Noor M, Adnan M, Khan MA, Rahman I, Alam M, Khan IA, Ullah H, Mian IA, Hassan S, Saud S, Bakhat HF, Hammad HM, Ahmad S, Nasim W (2019) Abiotic stress and rice grain quality. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead, Cambridge, pp 571–583

    Chapter  Google Scholar 

  • Fan J, Yang J, Wang YQ, Li GB, Li Y, Huang F, Wang WM (2016) Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Mol Plant Pathol 17:1321–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Liu J, Gong ZY, Xu PZ, Hu XH, Wu JL, Li GB, Yang J, Wang YQ, Zhou YF, Li SC (2020) The false smut pathogen Ustilaginoidea virens requires rice stamens for false smut ball formation. Environ Microbiol 22:646–659

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2019) Food and Agriculture Organization of the United Nations (Source: http://www.fao.org/news/archive/news–by–date/2019/en/)

  • Faruq AN, Amin MR, Islam MR, Islam MT, Alam MM (2015) Evaluation of some selected seed treatments against leaf blast, brown spot and narrow brown leaf spot diseases of hybrid rice. Adv Agric Biol 4:8–15

    CAS  Google Scholar 

  • Fatima Z, Ahmad M, Hussain M, Abbas G, Ul-Allah S, Ahmad S, Ahmed N, Ali MA, Sarwar G, Ehsan ul Haque, Iqbal P, Hussain S (2020) The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci Rep 10:18013

    Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ (2020) Threats to global food security from emerging fungal and oomycete crop pathogens. Nat Food 1:332–342

    Article  Google Scholar 

  • Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  PubMed  Google Scholar 

  • Gilland B (2002) World population and food supply: can food production keep pace with population growth in the next half-century? Food Policy 27:47–63

    Article  Google Scholar 

  • Groth DE (1993) Foliar fungicides for use in the management of rice diseases. LSU Agricultural Experiment Station Reports. 318. Louisiana Agricultural Experiment Station, LSU Agricultural CenterBaton Rouge (Source: http://digitalcommons.lsu.edu/agexp/318)

  • Guo X, Li Y, Fan J, Li L, Huang F, Wang W (2012) Progress in the study of false smut disease in rice. J Agric Sci Technol 2:1211–1217

    CAS  Google Scholar 

  • Gupta AK, Solanki IS, Bashyal BM, Singh Y, Srivastava K (2015) Bakanae of rice-an emerging disease in Asia. J Anim Plant Sci 25:1499–1514

    CAS  Google Scholar 

  • Hahn M (2014) The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J Chem Biol 7:133–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain I, Dey P, Hossain MZ (2011) Efficacy of Bion, Amistar and Tilt in controlling brown spot and narrow brown spot of rice cv. BR11 (Mukta). J Bangladesh Agric Univ 9:201–204

    Article  Google Scholar 

  • Huang S, Liu L, Wang L, Hou Y (2019) Research on advance of rice false smut Ustilaginoidea virens (Cooke) takah worldwide: IV. Identification of rice resistance to RFS, management and prospection of RFS. J Agric Sci 11:275–284

    Google Scholar 

  • Hussain T (2017) Nanotechnology: diagnosis of plant diseases. Agri Res Tech Open Access J 10:555777. https://doi.org/10.19080/ARTOAJ.2017.10.555777

    Article  Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics and management. Adv Agron 148:231–287

    Article  Google Scholar 

  • Iqbal M, Javed N, Yasin SI, Sahi ST, Wakil W (2013) Studies on chemical control of bakanae disease (Fusarium moniliforme) of rice in Pakistan. Pak J Phytopathol 25:146–154

    Google Scholar 

  • Iqbal MF, Hussain M, Waqar MQ (2015) Evaluation of best fungicide for controlling brown leaf spot in transplanted rice. Int J Adv Res Biol Sci 2:44–48

    CAS  Google Scholar 

  • Jain S, Jain A, Devra V (2014) Experimental investigation on the synthesis of copper nanoparticles by chemical reduction method. Int J Sci Eng Res 5:973–978

    Google Scholar 

  • Jiehua QI, Shuai ME, Yizhen DE, Shiwen HU, Yanjun KO (2019) Ustilaginoidea virens: a fungus infects rice flower and threats world rice production. Rice Sci 26:199–206

    Article  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Khaliq A, Kafafy R, Salleh HM, Faris WF (2012) Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes. Nanotechnology 23:455106

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Bhuiyan MR, Hossain MS, Sen PP, Ara A, Siddique MA, Ali MA (2014) Neck blast disease influences grain yield and quality traits of aromatic rice. C R Biol 337:635–641

    Article  PubMed  Google Scholar 

  • Khan MA, Ahmad S, Raza A (2019a) Integrated weed management for agronomic crops. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 257–281

    Chapter  Google Scholar 

  • Khan SM, Ali S, Nawaz A, Bukhari SAH, Ejaz S, Ahmad S (2019b) Integrated pest and disease management for better agronomic crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 385–428

    Chapter  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodakovsky A, Schröder P, Sweldens W (2000) Progressive geometry compression. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques. Addison-Wesley, New York, pp 271–278

    Google Scholar 

  • Khokhar LK, Jaffrey AH (2002) Identification of sources of resistance against Bakanae and foot rot disease in rice. Pak J Agric Res 17:176–177

    Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58. https://doi.org/10.5941/MYCO.2012.40.1.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluge E, Mendes MC, Faria MV, Santos LA, Santos HO, Szeuczuk K (2017) Effect of foliar fungicide and plant spacing on the expression of lipoxygenase enzyme and grain rot in maize hybrids. Acta Sci Agron 39:407–415

    Article  Google Scholar 

  • Kongcharoen N, Kaewsalong N, Dethoup T (2020) Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand. Sci Rep 10:1–7

    Article  CAS  Google Scholar 

  • Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa E (1926) Experimental studies on the nature of the substance secreted by the bakanae fungus. Nat Hist Soc Formosa 16:213–227

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q (2020) Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv 2:3083–3094

    Article  CAS  Google Scholar 

  • Liu S, Huang X, He H, ** Q, Zhu G (2016) Evaluation of selected plant growth regulators and fungicide residues in fruits for dietary risk assessment. Hum Ecol Risk Assess 22:1386–1395

    Article  CAS  Google Scholar 

  • Lore JS, Thind TS, Mohan C (2005) Performance of some new fungicide formulations against sheath blight of rice. Pestic Res J 17:49–51

    CAS  Google Scholar 

  • Lu S, Sun W, Meng J, Wang A, Wang X, Tian J, Fu X, Dai J, Liu Y, Lai D, Zhou L (2015) Bioactive bis-naphtho-γ-pyrones from rice false smut pathogen Ustilaginoidea virens. J Agric Food Chem 63:3501–3508

    Article  CAS  PubMed  Google Scholar 

  • Mallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Fechine PB (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop São Paulo 57:165–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • McClements DJ, Decker EA (2000) Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci 65:1270–1282

    Article  CAS  Google Scholar 

  • Mew TW, Leung H, Savary S, Vera Cruz CM, Leach JE (2004) Looking ahead in rice disease research and management. Crit Rev Plant Sci 23:103–127

    Article  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal P, Kumar R, Gogoi R (2017) Azomethine based nano-chemicals: development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg Chem 70:153–162

    Article  CAS  PubMed  Google Scholar 

  • Morton V, Staub T (2008) A short history of fungicides. APSnet Features. (Source: https://www.apsnet.org/edcenter/apsnetfeatures/Pages/Fungicides.aspx)

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068

    Article  CAS  PubMed  Google Scholar 

  • Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G (2016) Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One 11:e0167295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafeez-ur-Rehman, Nawaz A, Awan MI, Ijaz M, Hussain M, Ahmad S, Farooq M (2019) Direct seeding in rice: problems and prospects. In: Hasanuzzaman M (ed) Agronomic crops, Production technologies, vol 1. Springer Nature Singapore, Singapore, pp 199–222

    Chapter  Google Scholar 

  • Naz S, Fatima Z, Iqbal P, Khan A, Zakir I, Noreen S, Younis H, Abbas G, Ahmad S (2019) Agronomic crops: types and uses. In: Hasanuzzaman M (ed) Agronomic crops, Production technologies, vol 1. Springer Nature Singapore, Singapore, pp 1–18

    Google Scholar 

  • Nejad MS, Bonjar GH, Khatami M, Amini A, Aghighi S (2017) In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnol 11:236–240

    Article  Google Scholar 

  • Norman S, Hongda C (2013) IB in depth special section on nanobiotechnology, Part 2. Ind Biotechnol 9:17–18

    Google Scholar 

  • Ou SH (1985) Rice diseases. Commonwealth Mycology Institute, Kew. https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1958442)

    Google Scholar 

  • Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11:11–24

    Article  Google Scholar 

  • Pariona N, Mtz-Enriquez AI, Sánchez-Rangel D, Carrión G, Paraguay-Delgado F, Rosas-Saito G (2019) Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv 9:18835–18843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84

    Google Scholar 

  • Peerzada AM, Bukhari SAH, Dawood M, Nawaz A, Ahmad S, Adkins S (2019) Weed management for healthy crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 225–256

    Chapter  Google Scholar 

  • Quintana L, Gutiérez S, Arriola M, Morinigo K, Ortiz A (2017) Rice brown spot Bipolaris oryzae (Breda de Haan) Shoemaker in Paraguay. Trop Plant Res 4:419–420

    Article  Google Scholar 

  • Rafique M, Shaikh AJ, Rasheed R, Tahir MB, Bakhat HF, Rafique MS, Rabbani F (2017) A review on synthesis, characterization and applications of copper nanoparticles using green method. Nano 12:1750043

    Article  CAS  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9:1–11

    Article  Google Scholar 

  • Razaq M, Shah FM, Ahmad S, Afzal M (2019) Pest management for agronomic crops. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 365–384

    Chapter  Google Scholar 

  • Richa K, Tiwari IM, Kumari M, Devanna BN, Sonah H, Kumari A, Nagar R, Sharma V, Botella JR, Sharma TR (2016) Functional characterization of novel chitinase genes present in the sheath blight resistance QTL: qSBR11-1 in Rice Line Tetep. Front Plant Sci 7:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Rijal S, Devkota Y (2020) A review on various management method of rice blast disease. Malaysian J Sustain Agric 4:14–18

    Google Scholar 

  • Sarwar N, Ali H, Ahmad S, EhsanUllah AS, Mubeen K, Hill JE (2013a) Water wise rice cultivation on calcareous soil with the addition of essential micronutrients. J Anim Plant Sci 23(1):244–250

    Google Scholar 

  • Sarwar N, Ali H, Maqsood M, EhsanUllah SAN, Shahzad M, Mubeen K, Shahid MA, Ahmad S (2013b) Phenological response of rice plants to different micronutrients application under water saving paddy fields on calcareous soil. Turk J Field Crops 18(1):52–57

    Google Scholar 

  • Sasson A (2012) Food security for Africa: an urgent global challenge. Agric Food Secur 1:1–6

    Article  Google Scholar 

  • Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O (2011) Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett 6:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savary S, Castilla NP, Willocquet L (2001) Analysis of the spatiotemporal structure of rice sheath blight epidemics in a farmer’s field. Plant Pathol 50:53–68

    Article  Google Scholar 

  • Shahzad AN, Ahmad S (2019) Tools and techniques for nitrogen management in cereals. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 111–126

    Chapter  Google Scholar 

  • Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558

    Article  CAS  PubMed Central  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:1–24

    Article  CAS  Google Scholar 

  • Song J, Soytong K (2018) Nano-particles from Chaetomium against rice blast. bioRxiv. https://doi.org/10.1101/339283

  • Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control. Fungal Divers 7:1–15

    Google Scholar 

  • Tariq M, Ahmed M, Iqbal P, Fatima Z, Ahmad S (2020) Crop phenoty**. In: Ahmed M (ed) Systems modeling. Springer Nature Singapore, Singapore, pp 45–60

    Chapter  Google Scholar 

  • Thomas KM (1931) A new paddy disease in Madras. Madras Agric J 19:34–36

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titone P, Mongiano G, Tamborini L (2015) Resistance to neck blast caused by Pyricularia oryzae in Italian rice cultivars. Eur J Plant Pathol 142(1):49–59

    Article  Google Scholar 

  • Wang YA, Li JJ, Chen H, Peng X (2002) Stabilization of inorganic nanocrystals by organic dendrons. J Am Chem Soc 124:2293–2298

    Article  CAS  PubMed  Google Scholar 

  • Wasaya A, Yasir TA, Ijaz M, Ahmad S (2019) Tillage effects on agronomic crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 73–99

    Chapter  Google Scholar 

  • Wilson N (2018) Nanoparticles: environmental problems or problem solvers? Bioscience 68:241–246

    Article  Google Scholar 

  • Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8:285–309

    Article  CAS  Google Scholar 

  • **a ZK, Ma QH, Li SY, Zhang DQ, Cong L, Tian YL, Yang RY (2016) The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect 49:182–188

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Ma X, Gao YE, Hou M, Xue P, Li CM, Kang Y (2017) Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Mater Chem Front 1:1257–1272

    Article  CAS  Google Scholar 

  • Zahoor SA, Ahmad S, Ahmad A, Wajid A, Khaliq T, Mubeen M, Hussain S, Sami Ul Din M, Amin A, Awais M, Nasim W (2019) Improving water use efficiency in agronomic crop production. In: Hasanuzzaman M (ed) Agronomic crops, vol 2. Springer Nature Singapore, Singapore, pp 13–29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S. et al. (2022). Nanotechnology for Rice Fungal Diseases. In: Sarwar, N., Atique-ur-Rehman, Ahmad, S., Hasanuzzaman, M. (eds) Modern Techniques of Rice Crop Production . Springer, Singapore. https://doi.org/10.1007/978-981-16-4955-4_25

Download citation

Publish with us

Policies and ethics

Navigation