Value-Addition to Paper Waste

  • Living reference work entry
  • First Online:
Encyclopedia of Green Materials

Synonyms

Incineration; Obstacles; Pollutants; Soil amendments; Sustainable

Definition

Bioremediation is the removal of heavy metals or any pollutants from the waste waters using agroindustry by-product wastes. Bioremediation is the important process for sustainable environment. Sustainability is the process of maintaining the balance without causing any harm to the environment or living organisms. For circular economy, value addition of the wastes as soil amendments to improve the physicochemical properties of soil or commercially important products can be done.

Introduction

World paper industry covers almost 3.5% of the world industrial manufacture and 2% of world’s trade. Paper industry holds prominent position in business sector that are using circular economy approach. Paper generation was initially dependent upon the resources like plant material. With the extensive technology and sustainable development, waste papers have been used as raw material to reduce the loss of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adhikari CR, Parajuli D, Inoue K, Ohto K, Kawakita H, Harada H (2008) Recovery of precious metals by using chemically modified waste paper. New J Chem 32:1634–1641. https://doi.org/10.1039/B802946F

    Article  CAS  Google Scholar 

  • Annamalai N, Sivakumar N, Oleskowicz-Popiel P (2018) Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus. Fuel 217:420–426. https://doi.org/10.1016/j.fuel.2017.12.108

    Article  CAS  Google Scholar 

  • Annamalai N, Al Battashi H, Anu SN et al (2020) Enhanced bioethanol production from waste paper through separate hydrolysis and fermentation. Waste Biomass Valor 11:121–131. https://doi.org/10.1007/s12649-018-0400-0

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Gorecki W, Sanchez J-Y, Dufresne A (2004) Nanocomposite polymer electrolytes based on poly (oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852

    Article  Google Scholar 

  • Bhatnagar A, Minocha AK, Jeon B-H, Park J-M, Lee G (2007) Adsorption of orange G dye on paper mill sludge: equilibrium and kinetic modelling. Fresenius Environ Bull 16:99–103

    CAS  Google Scholar 

  • Byadgi SA, Kalburgi PB (2016) Production of bioethanol from waste newspaper. Procedia Environ Sci 35:555–562

    Article  CAS  Google Scholar 

  • Calce N, Nardi E, Petronio BM, Pietroletti M (2002) Adsorption of phenols by paper mill sludge. Environ Pollut 118:315–319

    Article  Google Scholar 

  • Camberato JJ, Gagnon B, Angers DA, Chantigny MH, Pan WL (2006) Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can J Soil Sci 86:641–653

    Article  Google Scholar 

  • Carpenter AF, Fernandez IJ (2000) Pulp sludge as a component in manufactured topsoil. J Environ Qual 29:387–397

    Article  CAS  Google Scholar 

  • Csiszar E, Kalic P, Kobol A, Eduardo de Paulo F (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480

    Article  CAS  Google Scholar 

  • Environment and Climate Change Canada (2016) Canadian environmental sustainability indicators: managing pulp and paper effluent quality in Canada. Environment and Climate Change Canada, USA

    Google Scholar 

  • Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydrate polymers, 118:165–169

    Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP (2003) Carbohydrate derived chlorinated compounds in ECF bleaching of hardwood pulps: formation, degradation and contribution to AOX in a bleached Kraft pulp mill. Environ Sci Technol 37(4):811–814. https://doi.org/10.1021/es0200847

    Article  CAS  Google Scholar 

  • Gagnon B, Lalande R, Fahmy SH (2001) Organic matter and aggregation in a degraded potato soil as affected by raw and composted pulp residue. Biol Fertil Soils 34:441–447

    Article  CAS  Google Scholar 

  • Gemellia E, Camargob NHA, Brescansinc J (2001) Evaluation of paper industry wastes in construction material applications. Mater Res 4(4):297–304

    Article  Google Scholar 

  • Ghodake GS, Yang J, Shinde SS, Mistry BM, Kim D-Y, Sung J-S, Kadam AA (2018) Paper waste extracted α-cellulose fibers super-magnetized and chitosan- functionalized for covalent laccase immobilization. Bioresour Technol 261:420. https://doi.org/10.1016/j.biortech.2018.04.051

    Article  CAS  Google Scholar 

  • Hassani A, Ganjidoust H, Maghanaki AA (2005) Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement. Waste Manage Res 23(4):322–327. https://doi.org/10.1177/0734242X05056739

    Article  CAS  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453

    Article  CAS  Google Scholar 

  • Hubbe MAMA, Metts JR, Hermosilla D, Blanco MAA, Yerushalmi L, Haghighat F, Lindholm-Lehto P, Khodaparast Z, Kamali M, Elliott A (2016) Waste water treatment and reclamation: a review of pulp and paper industry practices and opportunities. Bioresources 11:7953–8091. https://doi.org/10.1016/j.seppur.2011.07.002

    Article  CAS  Google Scholar 

  • Incani V, Danumah C, Boluk Y (2013) Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose 20:191–200

    Article  CAS  Google Scholar 

  • Ince BK, Ince O, Cetecioglu Z (2011) Pollution prevention in the pulp and paper industries. INTECH Open Access Publisher

    Google Scholar 

  • Ivarson KC, Morita H (1982) Single-cell protein by acid-tolerant fungus Scytalidium acidophilum from acid hydro lysates of waste paper. Appl Environ Microbiol 43(3):643–647

    Article  CAS  Google Scholar 

  • Jeong Y, Moon K, Jeong S, Koh W-G, Lee K (2018) Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bio imaging applications. ACS Sustain Chem Eng 6:4510–4515

    Article  CAS  Google Scholar 

  • Joshi G, Naithani S, Varshney VK, Bisht SS, Rana V, Gupta PK (2015) Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management. Waste Manag 38:33–40

    Article  CAS  Google Scholar 

  • Joshi G, Naithani S, Varshney VK, Bisht SS, Rana V (2017) Potential use of waste paper for the synthesis of cyanoethyl cellulose: a cleaner production approach towards sustainable environment management. J Clean Prod 142:3759–3768

    Article  CAS  Google Scholar 

  • Kim HJ, Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kan E, Kim YH, Lee SH (2015) Biocompatible cellulose nanocrystals as supports to immobilize lipase. J Mol Catal B Enzym 122:170–178

    Article  CAS  Google Scholar 

  • Kumar V, Kumar PDR, Singh YP, Kumar A (2012) Bioremediation of agro-based pulp mill effluent by microbial consortium comprising autochthonous bacteria. Sci World J 2012:7

    Article  Google Scholar 

  • Lei W, Fang C, Zhou X, Yin Q, Pan S, Yang R, Liu D, Ouyang Y (2017) Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohydr Polym 181:376–385

    Article  Google Scholar 

  • Liu RL, Gao MP, Zhang J, Li ZL, Chen JY, Liu P, Wu DQ (2015) An ionic liquid promoted microwave-hydrothermal route towards highly photo luminescent carbon dots for sensitive and selective detection of iron(III). RSC Adv 5(31):24205–24209

    Article  CAS  Google Scholar 

  • Méndez S, Barriga JM, Fidalgo GG (2009) Adsorbent materials from paper industry waste materials and their use in Cu (II) removal from water. J Hazard Mater 165:736–743

    Article  Google Scholar 

  • National Recycling Strategy Document and Action Plan (2014–2017) Bilim Ve Sanayi Ve Teknoloji Bakanlığı. Sanayi Genel Müdürlüğü, Ankara

    Google Scholar 

  • Okeyinka, Idowu (2014) Assessment of the suitability of paper waste as an engineering material. Eng Technol Appl Sci Res 4(6):724–727

    Article  Google Scholar 

  • Palmieri S, Cipolletta G, Pastore C et al (2019) Pilot scale cellulose recovery from sewage sludge and reuse in building and construction material. Waste Manag 100:208–218. https://doi.org/10.1016/j.wasman.2019.09.015

    Article  CAS  Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater – a review. Sci Total Environ 333:37–58

    Article  CAS  Google Scholar 

  • Prasetyo J, Park EY (2013) Waste paper sludge as a potential biomass for bio-ethanol production. Korean J Chem Eng 30:253–261. https://doi.org/10.1007/s11814-013-0003-1

    Article  CAS  Google Scholar 

  • Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479

    Article  Google Scholar 

  • Rocha JC, John MW (2003) Use of residues in housing construction. Coletânea Habitare, Porto Alegre

    Google Scholar 

  • Ruiken CJ, Breuer G, Klaversma E, Santiago T, van Loosdrecht MCM (2013) Sieving wastewater – cellulose recovery, economic and energy evaluation. Water Res 47(1):43–48. https://doi.org/10.1016/j.watres.2012.08.023

    Article  CAS  Google Scholar 

  • Sampaio LMP, Padrão J, Faria J, Silva JP, Silva CJ, Dourado F, Zille A (2016) Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohydr Polym 145:1–12

    Article  CAS  Google Scholar 

  • Saravanakumar T, Park HS, Mo AY, Choi MS, Kim DH, Park SM (2016) Detoxification of furanic and phenolic lignocellulose derived inhibitors of yeast using laccase immobilized on bacterial cellulosic nanofibers. J Mol Catal B Enzym 134:196–205

    Article  CAS  Google Scholar 

  • Sarkar R, Kurar R, Gupta AK, Mudgal A, Gupta V (2017) Use of paper mill waste for brick making. Cogent Eng 4:1405768

    Article  Google Scholar 

  • Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh BT (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recycle application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120

    Article  CAS  Google Scholar 

  • Shermale YD, Varma MB (2017) Properties of papercrete concrete: building material. IOSR J Mech Civil Eng 14(2):27–32. https://doi.org/10.9790/1684-1402072732

    Article  Google Scholar 

  • Shimada M, Hamabe H, Iida T, Kawarada K, Okayama T (1999) The properties of activated carbon made from waste newsprint paper. J Porous Mater 6:191–196

    Article  CAS  Google Scholar 

  • Spalvins K, Zihare L, Blumberga D (2018) Single cell protein production from waste biomass: comparison of various industrial by-products. Energy Procedia 147:409–418. https://doi.org/10.1016/j.egypro.2018.07.111

    Article  CAS  Google Scholar 

  • Spalvins K, Vamza I, Blumberga D (2019) Single cell oil production from waste biomass: review of applicable industrial by-products. Environ Clim Technol 23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071

    Article  CAS  Google Scholar 

  • Srivastava SK, Singh AK, Sharma A (1994) Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material. Environ Technol 15:353–361

    Article  CAS  Google Scholar 

  • Su H, Zhu P, Zhang L, Zhou F, Li G, Li T, Wang Q, Sun R, Wong C (2017) Waste to wealth: a sustainable and flexible super capacitor based on office waste paper electrodes. J Electroanal Chem 786:28–34

    Article  CAS  Google Scholar 

  • Sumathi S, Hung YT (2006) Treatment of pulp and paper mill wastes. In: Wang LK, Hung YT, Lo (eds) Waste treatment in the process industries, Taylor and Francis, USA

    Google Scholar 

  • Vishniac HS, Hempfling WP (1979) Cryptooccus vishniacii sp. nov., an Antarctic Yeast. Int J Syst Bacteriol 29(2):153–158. https://doi.org/10.1099/00207713-29-2-153

    Article  Google Scholar 

  • Wang H, Roman M (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macro ion complexes for drug delivery applications. Biomacromolecules 12(5):1585–1593

    Article  CAS  Google Scholar 

  • Zhou W, Gong Z, Zhang L, Liu Y, Yan J, Zhao M (2017) Feasibility of lipid production from waste paper by the oleaginous yeast Cryptococcus curvatus. BioResources 12(3):5249–5263. https://doi.org/10.15376/biores.12.3.5249-5263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Waghmode, M., Gunjal, A. (2023). Value-Addition to Paper Waste. In: Baskar, C., Ramakrishna, S., Daniela La Rosa, A. (eds) Encyclopedia of Green Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4921-9_280-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4921-9_280-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4921-9

  • Online ISBN: 978-981-16-4921-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation