Thermophilic Fungi: Habitats and Morpho-Molecular Adaptations

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

The study of extremophilic fungi has received manifold global attention during the past decade. Among the members belonging to the monophyletic fungal kingdoms, very few species have the capacity to survive and proliferate between the temperature range of 45–55 °C. These temperatures are considered as high temperatures while studying thermophilic and thermotolerant fungi. Earlier classification and studies were arbitrarily carried out based on their cardinal temperatures. The temperature endured by the fungi are not as high as those witnessed in bacteria and archaebacteria, adding to the very many reasons for not receiving due publicity in the past. However, drastic improvements in the methods employed for molecular fungal phylogeny and DNA-based studies has eliminated such hassles and paved the way for the elucidation of thermophily as an interesting phenomenon in fungi. Such fungal candidates have lent themselves as tools and excellent laboratory material for classical, genetic, and applied research. Their morphological, physiological, and molecular adaptations, characteristics, diversity and their role in different habitats such as soils, compost heaps, agricultural and forest debris, etc. have been reviewed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexopoulos CJ, Mims CW, Blackwell M (2010) Introductory mycology, 4th edn. Wiley

    Google Scholar 

  • Allen PJ, Emerson R (1949) Guayule rubber, microbiological improvement by shrub retting. Ind Eng Chem 41:346–365

    Article  CAS  Google Scholar 

  • Alves-Prado HF, Pavezzi FC, Leite RSR, Oliveira VM, Sette LD, DaSilva R (2010) Screening and production study of microbial xylanase producers from Brazilian Cerrado. Appl Biochem Biotechnol 161:333–346

    Article  CAS  PubMed  Google Scholar 

  • Apinis AE (1953) Distribution, classification and biology of certain soil inhabiting fungi. PhD thesis, Nottingham University, United Kingdom

    Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3:82–92

    Article  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. And sp. nov. represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21

    Google Scholar 

  • Borchani C, Fonteyn F, Jamin G, Paquot M, Thonart P, Blecker C (2016) Physical, functional and 503 structural characterization of the cell wall fractions from baker’s yeast Saccharomyces 504 cerevisiae. Food Chem 194:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1967) Life at high temperatures. Science 158:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1995) The road to Yellowstone and beyond. Annu Rev Microbiol 49:1–28

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Tsui C, Zhang K, Hyde KD (2002) Aquatic fungi from Lake Fuxian, Yunnan, China. Fungal Divers 9:57–70

    Google Scholar 

  • Chang SB, Matson RS (1972) Membrane stability (thermal) and nature of fatty acids in yeast cells. Biochem Biophys Res Commun 46:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci U S A A107:7835–7840

    Article  Google Scholar 

  • Cooney DG, Emerson R (1964) Thermophilic fungi. An account of their biology, activities and classification. W. H. Freeman & Co., San Francisco, CA

    Google Scholar 

  • Crisan EV (1973) Current concepts of thermophilism and the thermophilic fungi. Mycologia 65:1171–1198

    Article  CAS  PubMed  Google Scholar 

  • Dalmaso GZ, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dangles O, Chauvet E (2003) Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Water Res 37:533–538

    Article  CAS  PubMed  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Cassia Pereira J, Marques P, Rodrigues A, Oliveira TB, Boscolo R, da Silva R, Gomes E, Martins DAB (2015) Thermophilic fungi as new sources for the production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939

    Article  PubMed  CAS  Google Scholar 

  • De Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20

    Article  CAS  Google Scholar 

  • Di Piazza S, Houbraken J, Meijer M, Cecchi G, Kraak B, Rosa E, Zotti M (2020) Thermotolerant and thermophilic mycobiota in different steps of compost maturation. Microorganisms 8(6):880

    Article  PubMed Central  CAS  Google Scholar 

  • Evans HC (1969) The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales. Canad J Microbiol 15:515–520

    Article  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    Article  CAS  PubMed  Google Scholar 

  • Fries L (1953) Factors promoting growth of Coprinus fimetarius (L.) under high temperature conditions. Physiol P1 (Copenhagen) 6:551–563

    Article  CAS  Google Scholar 

  • Geoghegan I, Steinberg G, Gurr SJ (2017) The role of the fungal cell wall in the infection of plants. Review Trends in Microbiol 25(12):957–967

    Article  CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267

    Article  CAS  Google Scholar 

  • Grasso S, La Feria R (1985) Further investigations on the occurrence of lignicolous fungi in the brackish lake of Faro (Messina, Italy). Mem Biol Mar Oceanogr 7:233–243

    Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109

    Article  Google Scholar 

  • Gulis V, Kuehn KA, Suberkropp K (2009) Fungi. In: Likens G (ed) Encyclopedia of inland waters, vol 3. Elsevier, Oxford, pp 233–243

    Chapter  Google Scholar 

  • Gunde-Cimerman N, Zalar P, De Hoog GS, Plemenitas A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitas A (2003) Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Gunde-Cimerman N, Plemenitas A, Buzzini P (2014) Change in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Harris P, James AT (1969) The effect of low temperatures on fatty acid biosynthesis in plants. Biochem J 112:325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huhe YC, Chen X, Hou F, Wu Y, Cheng Y (2017) Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front Microbiol 8:606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Goh TK (1998) Fungi on submerged wood in Lake Barrine, North Queensland, Australia. Mycol Res 102:739–749

    Article  Google Scholar 

  • Ianutsevich EA, Danilova OA, Groza NV, Kotlova ER, Tereshina VM (2016) Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology 162(6):989–999

    Article  CAS  PubMed  Google Scholar 

  • Ianutsevich EA, Danilova OA, Kurilov DV, Zavarzin IV, Tereshina VM (2020) Osmolytes and membrane lipids in adaptive response of thermophilic fungus Rhizomucor miehei to cold, osmotic and oxidative shocks. Extremophiles 24(3):391–401

    Article  PubMed  CAS  Google Scholar 

  • Johri BN, Rajani (1999) Mushroom compost: microbiology and application. In: Bagyaraj BJ, Varma A, Khanna K, Kheri HK (eds) Modern approaches and innovations in soil management. Rastogi Publications, Meerut, pp 345–358

    Google Scholar 

  • Kane BE, Mullins JT (1973) Thermophilic fungi in a municipal waste compost system. Mycologia 65:1087–1100

    Article  CAS  PubMed  Google Scholar 

  • Kates M, Baxter RM (1962) Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Canad J Biochem Physiol 40:1213–1227

    Article  CAS  PubMed  Google Scholar 

  • Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F (2011) Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 35:620–651

    Article  CAS  PubMed  Google Scholar 

  • Latge JP (2007) The cell wall: a carbohydrate Armour for the fungal cell. Mol Microbiol 66:279–290

    Article  CAS  PubMed  Google Scholar 

  • Le Goff O, Bru-Adan V, Bacheley H, Godon JJ, Wéry N (2010) The microbial signature of aerosols produced during the thermophilic phase of composting. J Appl Microbiol 108:325–340

    Article  PubMed  Google Scholar 

  • Leite RSR, Alves-Prado HF, Cabral H, Pagnocca FC, Gomes E, DaSilva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus, Aureobasidium pullulans in agricultural wastes. Enzym Microb Technol 43:391–395

    Article  CAS  Google Scholar 

  • Lindt W (1886) Mitteilungen über einige neue pathogene Shimmelpilze. Arch Exp Pathol Pharmakol 21:269–298

    Article  Google Scholar 

  • Loginova LG, Gerasimova NF, Seregina LM (1962) Requirement of thermo-tolerant yeasts for supplementary growth factors. Microbiology 31:21–25

    Google Scholar 

  • Lord AK, Vyas JM (2019) Host defenses to fungal pathogens. In: Clinical Immunology. Elsevier, pp 413–424.e1

    Chapter  Google Scholar 

  • Macek I, Dumbrell AJ, Nelson M, Fitter AH, Vodnik D, Helgason T (2011) Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO2 springs. Appl Environ Microbiol 77:4770–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macek I, Vodnik D, Pfanz H, Low-Décarie E, Dumbrell AJ (2016) Locally extreme environments as natural long-term experiments in ecology. In: Dumbrell AJ, Kordas R, Woodward G (eds) Largescale ecology: model systems to global perspectives. Advances ecological research, vol 55. Elsevier, pp 283–323

    Chapter  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miehe H (1930) U¨ ber die Selbsterhitzung des Heues. Arb Dtsch Landwirtsch-Gesellsch Berlin 111:76–91

    Google Scholar 

  • Naranjo-Ortiz MA, Gabaldon T (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev 94:1443–1476

    Article  PubMed  Google Scholar 

  • Moretti MMS, Bocchini-Martins DA, Da-Silva R, Rodrigues A, Sette L, Gomes E (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 43(3):1062–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116:489–502

    Article  CAS  PubMed  Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Crypt Mycol 18:19–69

    Google Scholar 

  • Mouchacca J (2000a) Thermophilicfungi and applied research: a synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–888

    Article  Google Scholar 

  • Mouchacca J (2000b) Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes. World J Microbiol Biotechnol 16:869–880

    Article  Google Scholar 

  • Mumma RO, Fergus CL, Sekura RD (1970) The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids 5:100–103

    Article  CAS  PubMed  Google Scholar 

  • Nazareth S, Gonsalves V (2014) Aspergillus penicillioides – a true halophile existing in hypersaline and polyhaline econiches. Front Microbiol 5:412

    Google Scholar 

  • Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial applications. Appl Microbiol Biotechnol 51:711–729

    Article  CAS  PubMed  Google Scholar 

  • Noack K (1920) Der Betriebstoffwechsel der thermophilen Pilze. Jahrb Wiss Bot 59:593–648

    Google Scholar 

  • Oberson J, Rawyler A, Brandle R, Canevascini G (1999) Analysis of the heat-shock response displayed by two Chaetomium species originating from different thermal environments. Fungal Genet Biol 26:178–189

    Article  CAS  PubMed  Google Scholar 

  • Oliveira TB, Rodrigues A (2019) Ecology of thermophilic fungi. In: Fungi in extreme environments: ecological role and biotechnological significance, pp 39–57

    Chapter  Google Scholar 

  • Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19:31–37

    Article  PubMed  Google Scholar 

  • Oliveira TB, Gostinčar C, Gunde-Cimerman N, Rodrigues A (2018) Genome mining for peptidases in heat-tolerant and mesophilic fungi and putative adaptations for thermostability. BMC Genomics 19:152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orandi S, Yaghubpur A, Sahraei H (2007) Influence of AMD on aquatic life at Sar Cheshmeh coppermine. In: Abstract Goldschmidt Conference, Cologne, August 2007

    Google Scholar 

  • Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233

    Article  CAS  PubMed  Google Scholar 

  • Pan WZ, Huang XW, Wei KB, Zhang CM, Yang DM, Ding JM, Zhang KQ (2010) Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152

    Article  CAS  PubMed  Google Scholar 

  • Paterson RRM, Lima N (2017) Thermophilic fungi to dominate aflatoxigenic/mycotoxigenic fungi on food under global warming. Int J Environ Res Public Health 14:199

    Article  PubMed Central  CAS  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Zhou L, Chen A (2006) Effect of climate and CO2 changes on the greening of the Northern hemisphere over the past two decades. Geophy Res Lett 33(L23402):1–6

    Google Scholar 

  • Plemenitas A, Vaupotic T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson M, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104:813–825

    Article  PubMed  Google Scholar 

  • Prasad ARS, Kurup CKR, Maheshwari R (1979) Effect of temperature on respiration of a mesophilic and thermophilic fungus. Plant Physiol 64:347–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja HA, Miller AN, Pearce C, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Products 80(3):1–17

    Article  CAS  Google Scholar 

  • Rajasekaran AK, Maheshwari R (1990) Effect of growth temperature on lipid composition of a thermophilic fungus Thermomyces lanuginosus. Indian J Exp Biol 28:134–137

    CAS  Google Scholar 

  • Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18(3):345–354

    Article  Google Scholar 

  • Reddy GV, Ravindra Babu P, Komaraiah P, Roy KRRM, Kothari IL (2003) Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462

    Article  CAS  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Salar TK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agric Technol 3(1):77–107

    Google Scholar 

  • Samalova M, Melida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ (2016) The β-1,3-glucanosyltransferases (gels) affect the structure of the rice blast fungal cell wall duringappressorium-mediated plant infection. Cell Microbiol 19(e12659):1–14

    Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Seifert KA, Samson RA, Boekhaut T, Louis-Seize G (1997) Remersonia, a new genus for Stilbella thermophila, a thermophilic mould from compost. Canad J Bot 75:1158–1165

    Google Scholar 

  • Sekura RD, Fergus CL (1971) Thermophilic fungi: II, fatty acid composition of polar and neutral lipids of thermophilic and mesophilic fungi. Lipids 6:584–588

    Article  PubMed  Google Scholar 

  • Shearer CA, Raja HA, Miller AN, Nelson P, Tanaka K, Hirayama K, Marvanova L, Hyde KD, Zhang Y (2009) The molecular phylogeny of freshwater Dothidiomycetes. Stud in Mycol 64:145–153

    Article  CAS  Google Scholar 

  • Sibanc N, Zalar P, Schroers HJ, Zajc J, Pontes A, Sampaio JP, Maček I (2018) Occultifur mephitis fa, sp. nov. and other yeast species from hypoxic and elevated CO2 mofette environments. Intl JSyst Evol Microbiol 68(7):2285–2298

    Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71:522–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Pocas-Fonseca MJ, Johri BN, Satyanarayana T (2016) Thermophilic molds: biology and applications. Crit Rev Microbiol 42:1–22

    Article  CAS  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2007) Genetic variation among Penicillium crustosum isolates from the arctic and other ecological niches. Microb Ecol 54:298–305

    Article  CAS  PubMed  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2009) Fingerprinting using extrolite profiles and physiological data shows sub-specific grou**s of Penicillium crustosum strains. Mycol Res 113:836–841

    Article  PubMed  Google Scholar 

  • Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M (2015) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol 2:257–277

    Article  Google Scholar 

  • Sumner JL, Morgan ED (1969) The fatty acid composition of sporangiospores and vegetative mycelium of temperature-adapted fungi in the order Mucorales. J Gen Microbiol 59:215–221

    Article  CAS  PubMed  Google Scholar 

  • Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J (1994) Acquired Thermotolerance and heat shock proteins in thermophiles from three phylogenetic domains. J Bacteriol 176(19):6148–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiklinsky P (1899) Sur les mucédinées thermophiles. Ann Inst Pasteur 13:500–505

    Google Scholar 

  • Van Noort V, Bradatsch B, Arumugam M, Amlacher S, Bange G, Creevey C, Falk S, Mende DR, Sinning I, Hurt E, Bork P (2013) Consistent mutational paths predict eukaryotic thermostability. BMC Evol Biol 13:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittaker RH (1959) On the broad classification of organisms. Q Rev Biol 34:210–226

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163:150–160

    Article  CAS  PubMed  Google Scholar 

  • Wright C, Kafkewitz D, Somberg EW (1983) Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus. J Bacteriol 156:493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Zhang Y, Xu XY, Qi SH (2013) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67:525–530

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Zhang G, Chen S, Jiang Z, Tang Y, Henrissat B, Yan Q, Yang S, Chen CF, Zhang B, Du Z (2014) Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dass, R.S., Dhinakar, J.E., Tirkey, A., Ghose, M., Suresh, A.J. (2022). Thermophilic Fungi: Habitats and Morpho-Molecular Adaptations. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_4

Download citation

Publish with us

Policies and ethics

Navigation